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A California kid, Liz Oliphant grew up in the Silicon Valley with the
Pacific to the West & Tahoe to the East - a blend of tech & nature!
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INTRODUCTION

In university, Liz's research was on paleoclimate - Understanding
the chemistry behind climate change sparked a commitment

Climate change research Clumped Temperature Measurements
= Researched under Professor Dr. Sierra Petersen
= Project focus: Reconstructing paleoclimate 0 e Umbo
around the KT extinction period (dinosaurs!) : g:li'e
= Material: Shells used as climate proxy due to Q -
growth patterns reflecting environment o
UNIVERSITY OF = Methodology: Isotopic composition of oxygen & g ©
MICHIGAN carbon measured using mass spectrometry g
g 2
=
o —
|
o
I I
|\ ;’Zfrt;;ll Umbo

¥ Clumped isotope datarevealed significant A keen interest in climate change and
‘. environmental and biological shifts ‘ chemical re|ationships was born
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INTRODUCTION

Shifting to the modern day, there is another clear climate challenge
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INTRODUCTION

The UK's renewable capacity has hockey sticked since 2010 -
reaching >50% of 2024 generated electricity
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INTRODUCTION

The UK's renewable capacity has hockey sticked since 2010 -
reaching >50% of 2024 generated electricity
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INTRODUCTION

Renewable generation loads do not match the energy demand thus
the grid requires load shifting

POWER (KW)
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INTRODUCTION

BESS cumulative capacity in the UK has grown 7-fold since 2020
reaching ~7GW in 2025
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BESS cumulative capacity in the UK has grown 7-fold since 2020
reaching ~7GW in 2025
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THE BMS

BESS systems are comprised of batteries, PMS, PCS, HVAC & other
components with the BMS being the brains of the operations

The main configuration of ESS PMS(Power Management System)

= Monitor and estimate power consumption and active operation

= A real-time information received from PCS to monitor the ESS

= the ESS management according to the host controller command
= Management system history and version

= Faulty condition, remote maintenance for recovery available

Cooling System

PCS(Power Conditioning System)

= Invert DC power stored in batteries to AC
power with voltage and frequency of
commercial

= Convert AC power to DC and charged in
batteries

FFS(Fire Flgmm
Battery "

= Electrical energy stored in DC
= Discharge the electrical energy to grid via PCS

= Monitoring battery’s current, voltage, temperature, SOC, devices
status
= Exchange information and data to communicate with PCS

a BMS(Battery Management System)

Hyosung Heavy Industries
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The BMS's fundamental job is to keep the battery safely operating,
with compact and cost-conscious designs

BMS responsibilities
Communicate: Shares data with the EMS/PCS
for system control and safety

Monitor: Tracks voltage (V), current (A),

temperature(°C), and estimates State of Charge
(SOC), and State of Health (SOH)

Protect: Prevents overcharge, overdischarge,
and overheating.

Balance: Keeps cell voltages equal for longer
life and better performance.

Design concerns: safe and cheap!

Duendhd
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THE BMS

The BMS's fundamental job is to keep the battery safely operating,
with compact and cost-conscious designs

BMS responsibilities
Communicate: with the EMS

Monitor: track V, A, °C, and estimates SOC & SOH

BMSs typically costs between
10-30% of system cost

Lithium-lon Battery Pack Prices See Largest Drop Since 2017
Lithium-ion battery pack prices

/ Volume-weighted average in real 2024 dollars

$1,500/kWh
1,000
500
-20%
0
I I I I T I I I
2010 12 14 16 18 '20 22 2024
Source: BloombergNEF.
Note: Historical figures have been adjusted to real 2024 dollars. Values are
volume-weighted averages across passenger EVs, commercial vehicles, buses,
two- and three-wheelers and stationary storage. Includes cell and pack. BloombergNEF

Duendhd, BloombergNEF
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STATE OF CHARGE

Charge within a battery isn't measured, its calculated and harder to
determine than you'd think

100% SOC 75% SOC 50% SOC 0% SoC

OwlWISE
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STATE OF CHARGE

Understanding the state of charge is not just for convenience; it is
also essential for safety and long-term battery life

NMC Batteries

= Normal range: 3.0-4.2V

= Below 2.5 V: Solid Electrolyte
Interphase (SEI) layer breaks down
— capacity loss

= Below 2.0 V: Copper dissolves,
causing shorts circuits & fire risk

= Below 1.5 V: Cellis unrecoverable

Prevention: use a BMS cutoff
typically ~2.7V

cell voltage [V]

LFP Batteries
= Normal range: 2.5- 5.65
= Below: more stable, but undervoltage degrades BESS

| | | |
| | | |
I | I |
2 ________ e ————— — — — — | — — — — — — — — — — (R —
__________________ A S A I
L5 cut-off voltage |
: deep
discharge discharge
|« - ' >
I I
I |
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| | ! |
I | 1 |
| | i |
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Blank et. al, 2012
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STATE OF CHARGE

Coulomb counting calculates charge by tracking current flow in and
out of a battery over time, but it is prone to error drift

=R

100% SOC 75% SOC 50% SOC 0% soC

[(t)
A
0n

SoC(t) = SoC(t — 1)

OwlWISE
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STATE OF CHARGE

The OCV curve isused to calculate charge, but it has precarious
relationship with LFP chemistry leading to SOC errors

4.0 _ //
> 3.5 —
S e ————
> —
(@]
© 30
— NMC graphite ~ ----- LFP graphite charging
2.5 _ NCA graphite =~ e LFP graphite discharging
0 20 40 60 80 100
SOCin %

ACCURE Battery Intelligence
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BESS CHEMISTRY

The chemistry determines the operational properties and best use
cases for different batteries

LFP (Lithium Iron Phosphate)

» Safe thermal stability

« Slightly lower energy density
» ~20% cheaper per kWh

» 3k-8k cycles

LFP forms strong chemical
bonds, making it stable, safe,
and durable

NMC (Nickel Manganese Cobalt)

AR El
[1Y\
|
b .
T
8
I

« High energy density
N & C have cost & ethical risks
» ~2k cycles

NMC provides high voltage but
less stability, requiring active
cooling and management

Other Chemistries

NCA (Nickel Cobalt
Aluminum): Exceptional
specific energy used in Tesla's
premium models(Model S)

Sodium-ion: Uses abundant,
cheap materials, but lower
energy density
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BESS CHEMISTRY

Chemical composition & structure affect power density & stability

NMC Cathode (layered structure) LFP Cathode (Olivine structure) ?I)

2+ it
Stable to 200-250°C, faster degradation Stable to 400-500°C, slower degradation, resiliency € o /lT\o_ Li
N - O-
Energyis » ‘ _
released 2 Restricted,
during single-file
discharging as movement
lithium moves
intoamore v /
stable state ‘ ‘
within the
cathode,
where metal Stable
ﬁf;ffin phosphate
' - units
Quick-moving  Nickel, cobalt, and manganese form Stableiron-
ion highways atetrahedral arrangement oxygen clusters

Capture Energy, 2025 21
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The SOC is complicated to calculate due to precarious relationship
between the chemistry & the Open Circuit Voltage (OCV)vs SOC.

4.0 _ //
> 3.5 —
S m——————
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o
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- NMC graphite ~ ----- LFP graphite charging
25 | NCA graphite =~ e LFP graphite discharging
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ACCURE Battery Intelligence
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STATE OF CHARGE

LFP has such a flat OCV relationship because 2 phases coexistent

LiFePO,=FePO +Li++e-
4.0]

Two distinct crystalline phases coexist: _
LiFePO, — when lithium is present ' /

FePO, (triphylite) — when lithium is removed =99

Because the reaction occurs as a first-order phase ©3.0]
transformation (not gradual), the chemical
potential of Li* (thus V) remains nearly constant - | LFP graphite dch
while both phases coexist. 25 |

0 20 40 60 80 100
SOCin %

The Two-Phase Reaction Mechanismresults in a flat voltage plateau

ACCURE Battery Intelligence
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STATE OF CHARGE

To make matters more complicated, the OCV curve varies slightly in
charging & discharging due to voltage hysteresis

34 OCV when Discharging 34 OCV when Charging
- - = =0CV - - — =0CV
- N e Average OCV - . || LT Average OCV
.E .1.. -E .1.'-\* T,
o 30 v © 330 ITT e~
) ==, =2 U
e RN e el
= N = T T -
= 33| Tl = 33| 5
— T S ; 'u — I--*.
= N 3] Kk
O S & "
o 3.25 N S 3.25 2
‘el -, " o '.‘q.
o N o A
h b
% i
3.2 ' ' : e 3.2 : : : ' :
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8
Depth of Discharge (DoD) Depth of Discharge (DoD)

https://www.mathworks.com/help/simscape-battery/ug/model-battery-hysteresis-voltage-

example.html Vander Venetal. &
Gregory Plett
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THE BMS

The BMS's fundamental job is to keep the battery safely operating,
with compact and cost-conscious designs

BMS responsibilities
Communicate: with the EMS

Monitor: track V, A, °C, and estimates SOC & SOH

BMSs typically costs between
10-30% of system cost

Lithium-lon Battery Pack Prices See Largest Drop Since 2017
Lithium-ion battery pack prices

/ Volume-weighted average in real 2024 dollars
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Source: BloombergNEF.
Note: Historical figures have been adjusted to real 2024 dollars. Values are
volume-weighted averages across passenger EVs, commercial vehicles, buses,
two- and three-wheelers and stationary storage. Includes cell and pack. BloombergNEF

Duendhd, BloombergNEF
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STATE OF CHARGE

LFP BMSs often have SOC error margins of >10% - predictive

analytics can lower the error margin to +/-2%.
LFP State of Charge (SOC) estimation of a 50MWh+

100 1

50 1

1

-

-

al

= BMSSOC
= ACCURE SOC
SOC Difference

\_ ~

1712

1713

SOC Errors

1714 1/15

>12% inaccurate daily

ACCURE Battery Intelligence
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STATE OF CHARGE

SOC estimation errors can amplify system imbalances, leading to
portions of the battery’'s capacity becoming unusable

Unusable capacity Cell determines end of charge

due to imbalances i

Cell determines end of discharge

ACCURE Battery Intelligence
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STATE OF CHARGE

Persistent SOC errors and imbalances result in lost capacity which
can be regained through BMS recalibration.

Nominal Capacity

capacity after 1year
ACCURE Battery Intelligence

28
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PREDICTIVE ANALYTICS

Leveraging greater computing power for predictive analytics
enables BESS operators to become proactive rather than reactive.

I
1 ° ° 0
=0 >
BMS 2 Cloud Diagnostics B o
5 o
4 %)
" S 2
< >0
2 23
— o C
S =X
React to acutely = «@ p
occurringlissues o Pro-actively handle anomalies using forecasts am
]
REACTIVE INSIGHTS PROACTIVE
Rule-based / Empirical / Semi- Reduced order Physical /
Logic-based data-driven/ ML empirical model-based chemical

TWAICE 4IIACCURE
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PREDICTIVE ANALYTICS

LFP BMSs often have SOC error margins of >10% - predictive

analytics can lower the error margin to +/-2%.
LFP State of Charge (SOC) estimation of a 50MWh+

100 1

50 1
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-
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= BMSSOC
= ACCURE SOC
SOC Difference

\_ ~

1712

1713

SOC Errors

1714 1/15

>12% inaccurate daily

ACCURE Battery Intelligence
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PREDICTIVE ANALYTICS

Predictive analytics can utilize multiple methods to increase the
precision and accuracy of SoC calculations.

LFP State of Charge (SOC) estimation of a 50MWh+

100 1

50 1

1

n .

BMSSOC
ACCURE SOC

I(t)

SoC(t) =SoC(t—1) + Q—At

n

SOC Difference “0

= =

1712

1713 1/14

SOC Errors
>12% inaccurate daily

OCV when Discharging

- = =0CV
---------- Average OCWY

0.2

0.4 06 08
Depth of Discharge (DoD)

1
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PREDICTIVE ANALYTICS

Predictive analytics can also pinpoint cell-to-cell performance

differences linked to manufacturing deviations.

AV

AT
Ry = f(SOC,T)

Rin.t —

Number of Cells

S L end of life
N

N
\

Remaining capacity in %
(0 0]
()

N \
50 1 1 1 1 ! \\\‘X\
Internal Resistance in mQ 0 200 400 600 800 1000 1200 1400 1600 1800

Cycle number

3 distinct batches of manufacturing with alarge The effect of differences in manufacturing
range in internal resistance amplify as the battery ages

ACCURE Battery Intelligence
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PREDICTIVE ANALYTICS

Still utilizing just the BMS data, predictive analytics can get insights
Into external stresses and other components.

Standard system System with sensor issues
3.6 1
3.5
3.4 1
= =
= c
S 3.3 >
S S
S S
= =
3.2
3.11
—— Max. cell(ID 1-1200) —— Max. cell(ID18)
301 T Min. cell(ID 1-1200) | Min. cell (ID 17)
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PREDICTIVE ANALYTICS

Still utilizing just the BMS data, predictive analytics can get insights
Into external stresses and other components.

Real life situation

= High spike in temperature during
commissioning

= Operational conditions voided warranty

AMACCURE ™~

= Root cause determined to bea
subcontractor bringing in a dehumidifier
to cover up water damage

= Litigation ongoing 401

[o}
o

>60°C

=~
o

Temperature in °C

e
o

Currentin A
o

ACCURE Battery Intelligence
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PREDICTIVE ANALYTICS

Leveraging greater computing power for predictive analytics
enables BESS operators to become proactive rather than reactive.

I
1 ° ° 0
=0 >
BMS 2 Cloud Diagnostics B o
5 o
4 %)
" S 2
< >0
2 23
— o C
S =X
React to acutely = «@ p
occurringlissues o Pro-actively handle anomalies using forecasts am
]
REACTIVE INSIGHTS PROACTIVE
Rule-based / Empirical / Semi- Reduced order Physical /
Logic-based data-driven/ ML empirical model-based chemical

Safety Performance Lifetime
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THE GLOBAL LEADER IN BATTERY ANALYTICS

ACCURE turns battery data into action.

Award-winning platform
built by world-class battery
experts.

8+ cwh

supported globally

’
.‘ .10 .’C\eantcech
. J' \ e Groun

.‘.” / ‘.0‘. .’:’ F R O &
> 3 &
3> BEST PRACTICES
%L %( Sonane )g %L e
ENERGY STORAGE
CLEANTECH100 —
SAFETY PRODUCT OF THE YEAR
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PREDICTIVE ANALYTICS

ACCURE turns the battery data you already collect into

measurable revenue gains and OPEX savings

ol

ASSET OPTIMIZATION

+6% more available MWh by
reversing SoC imbalance

+11% trading revenue
from accurate, real-time SOC

Decrease inunplanned downtime

oo

9

CLAIMS AND COMPLIANCE

100% of warranty cases
claimable with data backed
evidence meet every OEM and
insurer requirement

~Q
M

OPERATIONAL EXCELLENCE

98 % reduction inincident risk and
25% less asset manager effort

One FTE can actively manage and
optimize multi-vendor fleets

ACCURE Battery Intelligence
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CONCLUSION

BESS cumulative capacity in the UK has grown 7-fold since 2020
reaching ~7GW in 2025
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CONCLUSION

Renewable generation loads do not match the energy demand thus
the grid requires load shifting
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CONCLUSION

Voltage instability triggered in the 2025 Iberian blackout - batteries
can be a solution but only if they can operate when needed most!

CITIES & AREAS IN EUROPE AFFECTED
BY POWER OUTAGES

- ‘- < N T o=
CoRa TG ), [0 gt TS
.

Metro UK, 2025 40
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CONCLUSION

Data centers need consistent load - integration of batteries can be
a solution but only if they can operate when needed most!

E E a For you 4 Home l.. News Sport |\_ Weather I> iPlz
current growth focused in oil and gas

producing regions (NM, ND) and near- NEWS
term data center growth (OK, MO)

Pacific Northwest
Data centers and chip
fabrication plants
driving growth

Home | InDepth | Israel-Gaza war | War in Ukraine | Climate | UK | World | Business | Politics | Cultu

MISO | Relatively low growth Technology
rate, but makes the “top six”
by virtue of its size, with

GonihclR 5 Toteeast anricid What caused the AWS outage - and
why did it make the internet fall
apart?

PJM | Load growth
driven by data centers in
Northern Virginia, also
some data centers (PA)
and manufacturing (OH)

Georgia Power | Load growth driven
by data centers in Atlanta region and
some manufacturing

centers in Dallas-Ft. Worth region, also
some oil and gas production

@ ERCOT | Load growth driven by data Grid Strategles @

Grid Strategies, 2025
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CONCLUSION

BESS assets are revenue stacking - improving availability & trading
improves ROl by decreasing risk & increasing profitability

Capacity payments' contribution to the revenue stack doubled in two years

Energy arbitrage and Ancillary Service provision all roughly halved their contributed

W Resource Adequacy M DAM Energy lRTM Energy M Ancillary Services

\

q’o q'b‘ ol > .
X3 v.Q 5& O° 5@ \»Q ~ O° 3,0 Loga‘m & Peter

Percent of revenues (%)

8

o

6

o

4

o

2

o

0

Sources: CAISO, FERC EQR, Modo Energy MODOENERG YpMqpqo Energy CAISO, 2025
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CONCLUSION

BESS cumulative capacity in the UK has grown 7-fold since 2020
reaching ~7GW in 2025
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Still a California kid at heart, Liz Oliphant aims to utilize technology,

data, and knowledge sharing to conserve nature!
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