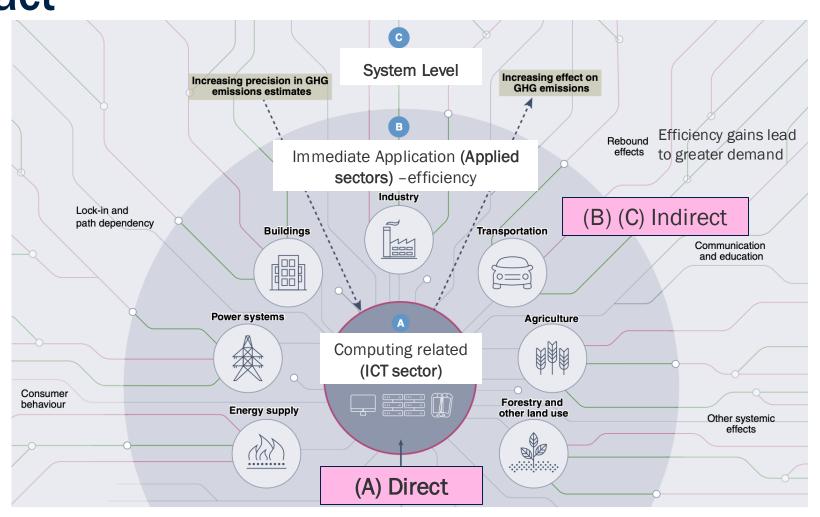
Environmental *Change* Institute

Exploring Digitalisation's Footprint

Yee Van Fan


Digitalisation: Al is today's wave

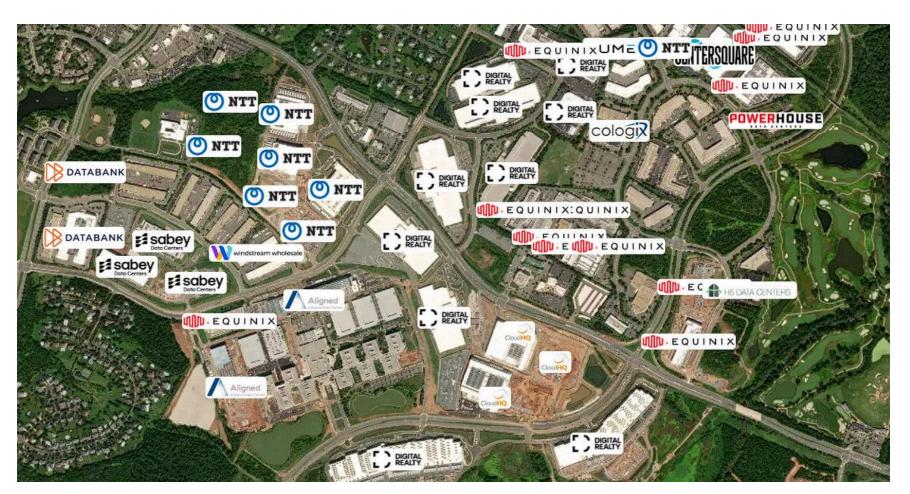
	Digitise	Connect	Compute/Act
Concept	represent work / information in bits	link people + systems in real time	use data to decide and take action
Examples	mainframes, PCs, office software, databases/storage	internet, web, email, browsers, social platform, smartphone, cloud	robotics or automation, AI: machine learning, deep learning, LLMs, agentic systems
Milestones	~1951: 1 st computer commercially available ~1981: laptop computer introduced	~1971: 1st email sent ~1989: www is invented ~1991: dial up internet ~2003: Skype is launched ~2007-2010: IPhone & IPad launched	~2012: Google tests self driving cars ~2023: OpenAl release ChatGPT

Each waves built on the previous one, expanding what digitalisation can do.....

Direct Footprint: A Key Part of Understanding the Total Impact

- Data Centre

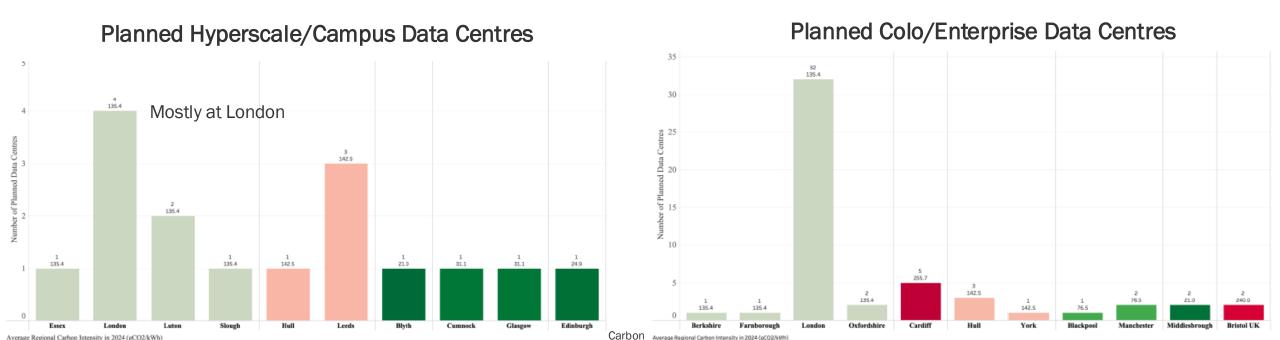
 (backbone of digital ecosystem, growing faster, opportunities for intervention)
- Network
 Infrastructure
- Devices



Now: ~10,000-12,000 Data Centres Worldwide

- ~ 1200 are hyperscale facilities
- Account for 44 % of data centre capacity

World's Densest Data Centre Hub (Northern Virginia)



- 397 Data Centre
- 252 Operational
- 145 Developing
- Worldwide: 2.2 trillion will be spent on data centres

Growing fast....

UK: Estimated that Another 78-100 Data Centres Will Be Built (Accelerating)

- Power constraints rather than carbon intensity drive shift towards 'Tier 2' markets
- Far down the list of priorities for sitting decisions
- Decisions concerning carbon intensity are primarily framed at the country level, not sub-national

Is the environmental factor considered in siting decisions?

Data Centres are Massive

Main Systems

- ❖IT equipment: server, network, storage,
- Power Infrastructure
- Cooling and air conditioning
- ❖ Racks and containment

Small

- 5000-20,000 sq.ft
- 500-200 servers
- 1-5MW

Large or hyperscale

- 100,000 sq.ft to several million sq.ft
- Thousands of servers
- 20 to over **100MW** enough to supply ~80,000 UK homes

World's Largest (≈ 150 MW)

 $= 10,763,910 \text{ sq.ft} (\approx 1,000,000 \text{ m}^2)$

Buckingham Palace x13

Heathrow T5 x3

The Loudest Headline: Environmental Concern

Ethics/Inequality Efficiency **Environmental** Concern **Productivity** Convenience Security

Local (Direct) Near Term

Global

(Direct)

Mid-

Long Term

- Data-centres in Ireland could account for 32% of all electricity demand by 2026
- U.S. data centres contend to experience day
 day
- Each 100-word Al prompt is estimated to use roughly one bottle of water
- Global data centres expected to consume more electricity than Japan by 2030 (implication on emissions)
- Embodied carbon can comprise up to 50-90 % or more of total lifecycle emissions. (+ material security, e-waste issue)

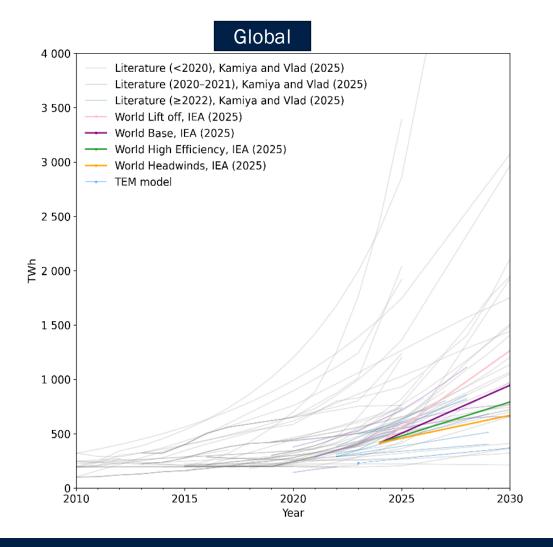
Modelling Energy and Material Futures for Data Centres (Mid-Long Term)

What we are doing

- Exploring/projecting ranges of possible futures
- Assessing pathways are compatible with climate targets

Why we do it

- Despite its enabling potential (across sectors), sustainable steering requires understanding digitalisation's own footprint
- Exploring net climate consequences needs a credible direct baseline first


Will Data Centres Put the Paris Climate Targets Out of Reach?

Will Data Centres Increase Our Dependence on Certain Countries for Critical Raw Materials?

Many projections — Big Spread and Most Stop in 2030

- Newer base years may align with higher forecasts due to technological breakthroughs
- It also depends heavily on scenario assumptions and framing.
- Most projections avoid going beyond 2030 (Why it Matters?)
- We need consistent and longer-term projections to inform climatemitigation strategies

The Challenge of a Longer Term Projection: Up to 2050

High uncertainty due to rapid evolution

 Overestimation of linear extrapolation (hype is large and the growth rate short term is explosive) Past estimates of ICT energy use were often alarmistic and later proven too high

 Late 1990s to early 2000s: "Dig more coal, PCs are coming" - could soon consume half of all U.S. electricity.

 Late 2010s: "Tsunami of data could consume one fifth of global electricity by 2025"

Could misdirecting long term investment and policy

Managing the Challenge: Bounded Futures under SSPs

• Uncertainty: Scenario envelope - Use Shared Socioeconomic Pathways (SSPs) as the scenario backbone. (Not to choose one number, but to see which futures meet net-zero and what gets us there)

• Overestimation of extrapolation: IEA bottom-up projections for the near term, and then **bound** 2030–2050 growth using empirically observed (and derived) elasticities in two historical phase.

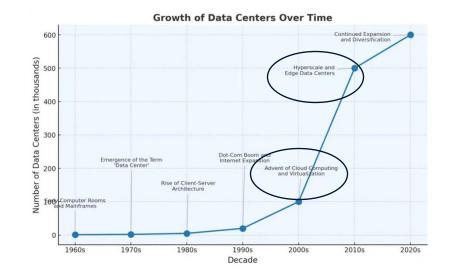
Our Scenarios: SSPs Framework "Different Future World"

Rapid SSP3 SSP5 economic Fossil-fueled Development Regional Rivalry Taking the Highway A Rocky Road growth (but Policy focused on security Policy focused on free fossil markets Barriers to international trade based) to mitigation High consumption High inequality Effective international cooperation Slow economic growth Reduced inequality Low population growth in rich countries, high in other High economic growth countries SSP2 19 Increasing challenges Middle of the Road Low population growth Current SSP1 SSP4 Inequality Taking the Green Road A Road Divided Policy focused on sustainable Policy focused on elite development High consumption Effective international cooperation High inequality Strong Reduced inequality within and across countries Low to medium economic growth inequality Low consumption Low population growth in rich between elites countries, high in other countries Low population growth SDG World and the rest Prioritise SD Increasing challenges to adaptation

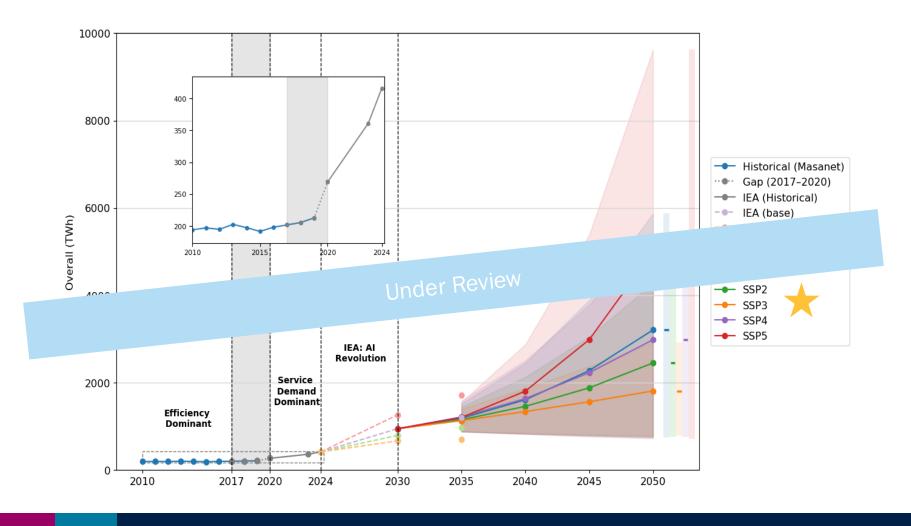
Fragmented World (patterns seen in some recent political movements)

- 5 different plausible socioeconomic futures
- Internationally recognised "future worlds" used by IPCC and the climate modelling community
- Credibility + comparability + consistency (same underlying structure)

Using Distinct Historical Growth Phases to Define Extrapolation Bounds

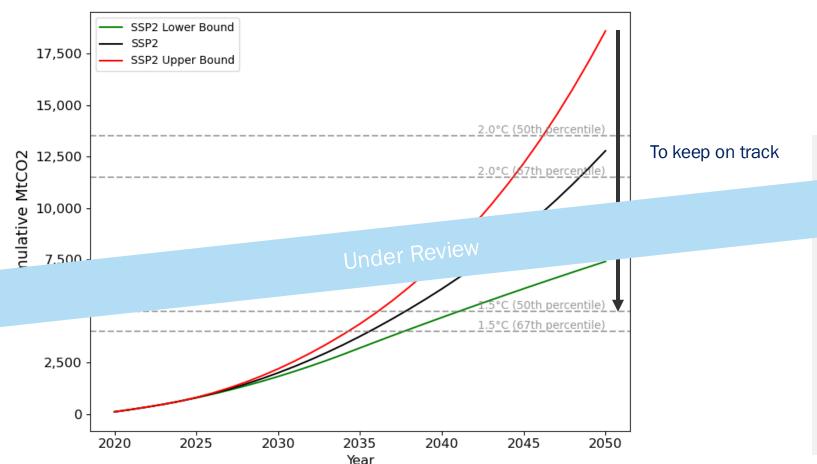

Electricity consumption of Data Centre - Global Historical (Masanet) - Gap (2017-2020) IEA (Historical) IEA (base) - IEA (Lift-off) -o- IEA (High efficiency) IEA (Headwinds) Service Demand Dominant equipment-level data with Efficiency operating assumptions 1250 gains By IEA (2050) Overall (TWh) continued Faster growth **Efficiency Dominant** 1000 in cloud · Fall in PUE (better cooling workloads etc.) 750 Surge in Shift from enterprise -> training etc. hyperscale Hardware efficiency 500 improvement 250 Al Transformation 2010 2017 2020 2024 2030

Data center energy efficiency gains have flattened out


Source: Reported data center PUE figures in global Uptime Institute surveys from 2007 to 2020

Uptime Institute INTELLIGE

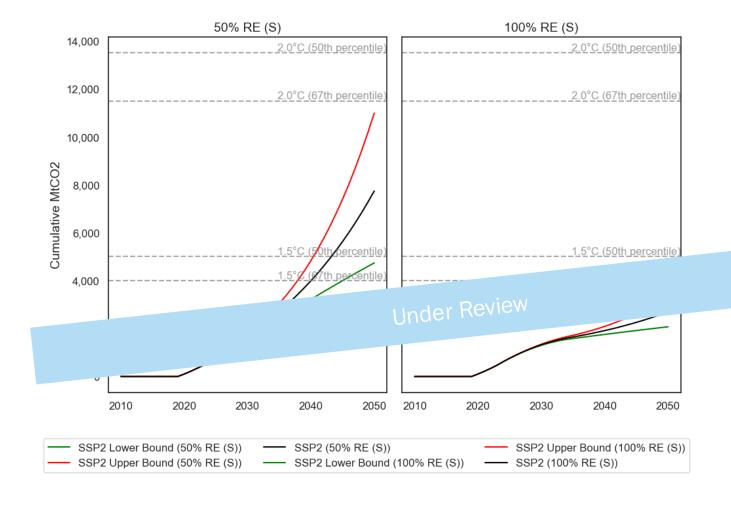
Our SSP2 Run Suggests Global Electricity Demand Could Reach ~2 500 TWh by 2050



- 1,800 and 5,000 TWh by 2050
- 2024-2030: CAGR = 15 % per year
- 2024-2050: CAGR = 7 % per year (slower growth rate)

Will data centres put the Paris climate targets out of reach?

Yes, Data Centres Could Possibly Push the Paris targets Beyond Reach If Trends Continue



Assumptions:

- Other sectors are assumed to stay within 99% of the emissions budget.
- Data centres are allocated 1% of the total emissions budget
- Indirect emissions from digitalisation are attributed to the respective sectors.
- SSP2 carbon intensity (grid mix) = BaU

Renewable Energy to Reduce Data Centre Emissions

- Sustainability commitments and procurement strategies: potentially a "Lower" carbon intensity than the average grid mix
- The target: 100% (Short-term reality: rising fossil-based supply to meet rapid demand)
- e.g. 24/7 carbon free energy matching,
 Neutral Data Centre Pact (100 % by
- The GHG emission consequences of data centre is important but manageable

To remain compatible with $1.5\,^{\circ}\text{C}$ climate targets, we estimate that the average weighted carbon intensity of electricity must fall below ~100 gCO₂/kWh from 2030.

Modelling the Material Futures: Beyond Operational Demand and Emissions

Critical Raw Material, Rare Earth: Major Geopolitical Topic (Push for Diversification)

China's critical mineral curbs shake Al data center suppliers

China's grip on minerals threatens Al boom in US

US and **Ukraine** sign minerals deal set to reduce China's rare earths dominance

How the US overtook China as **Africa**'s biggest foreign investor

Trump Signs Rare Earths Deal With Australia

Putin orders road map for Russian rare earths extraction

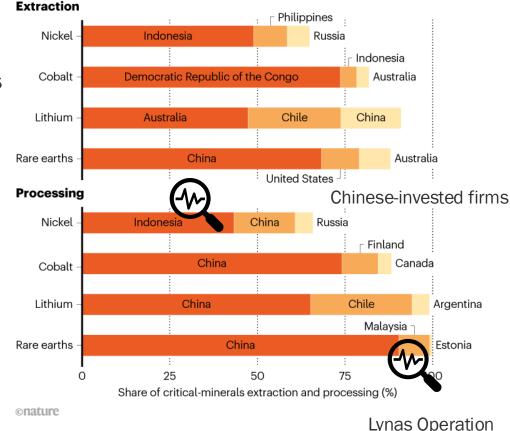
EU targets Africa's mineral wealth and green energy in new partnership

Malaysia's rare earths ambition: Lynas expands operations

Vietnam emerges as key rare earth source as Korea reduces reliance on China

The story behind the scramble for **Greenland**'s rare earths

UK closes in on critical minerals deal with Greenland


Limited Progress in Diversifying: Top 3 Extractors & **Processors**

RARE SOURCES

The top three extractors and processors of various critical minerals by country in 2022. According to the International Energy Agency, there has been limited progress in diversifying these sources since 2019.

Concentrated in a few countries

Even more concentrated (China dominates this stage)

Countries with mineral resources, or with processing capacity, are becoming part of this global race

Rare Earth

- Chemical family
- 17 metallic elements
- Abundant in crust but rarely concentrated
- Light vs Heavy REEs
- Heavy REEs is rarer, harder to separate and often more critical for advanced technologies

All rare earths are "critical," but many critical materials are not rare earths

Critical Raw Material

- Policy category (economic importance and supply risk)
- In EU: Dynamic list (every 3 years) (e.g. copper and nickel are added to the list as strategic raw material)
- 34 CRMs in 2023 list

To respond to these risks, Critical Raw Materials Act (EU):

- Extracting 10% of the EU's CRM needs (annual).
- Processing 40%.
- Recycling 25%.
- Limiting dependency on a single third-country supplier to 65%.

Rock-to-Metal Ratios and Energy Intensity

Ore mined and waste rock removed to produce a refined unit of a mineral commodity

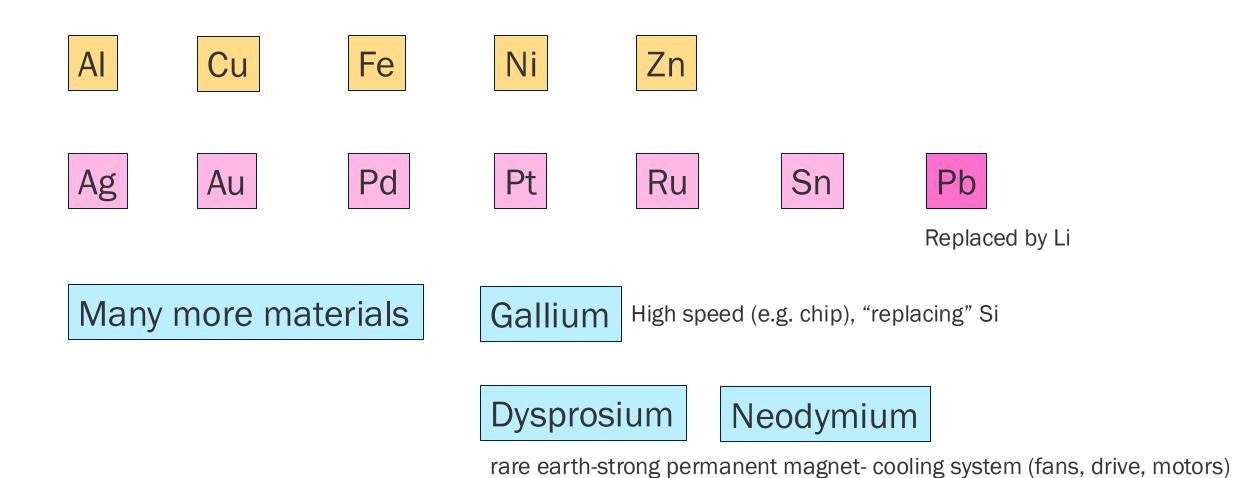
- Aluminium = 7:1
- Iron= 9:1
- Copper = 513:1
- Lithium = 1634:1
- Rare Earth
 - Cerium = 23:1
 - Dysprosium = 17,000:1
- Gold = 1,500,000:1

not just about having the material in the ground

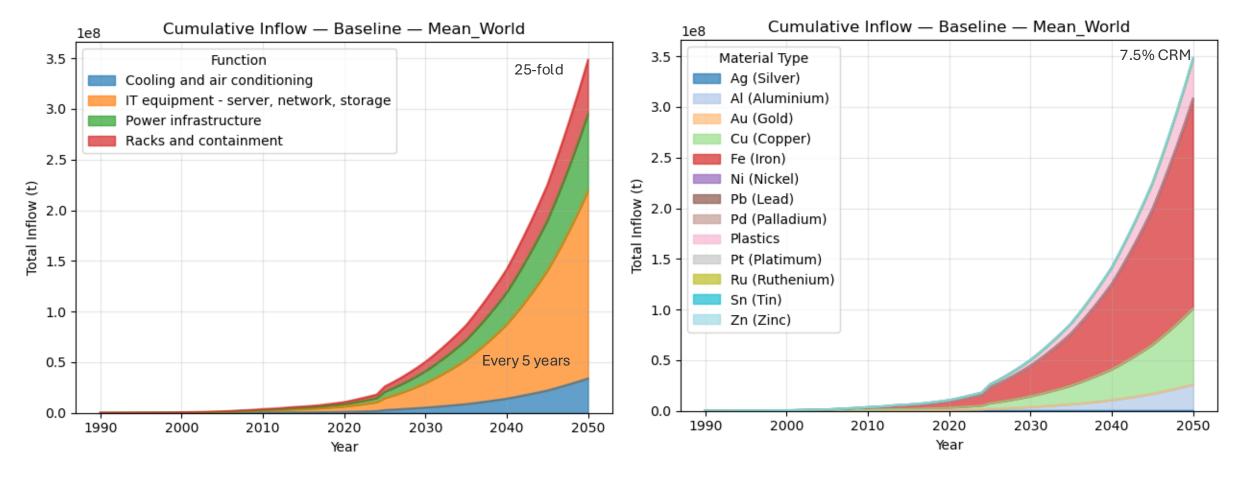
Primary energy required to produce a usable mineral concentrate (data: early 2010s)

- Aluminium = $31 \, \text{GJ/t}$
- Iron = $0.7 \, \text{GJ/t}$
- Copper = $53 \, \text{GJ/t}$
- Lithium = $12.5 \, \text{GJ/t}$
- Rare earth element = 40 GJ/t
- Gold = 135,496 GJ/t
- Platinum group metal = 175,000 GJ/t

Note: Rare earth use in small quantities (g), and for material: overall footprint depends on lifetime unlike operational



1200 L petrol (25 full tank)



What Is Inside a Data Centre? — Key Materials

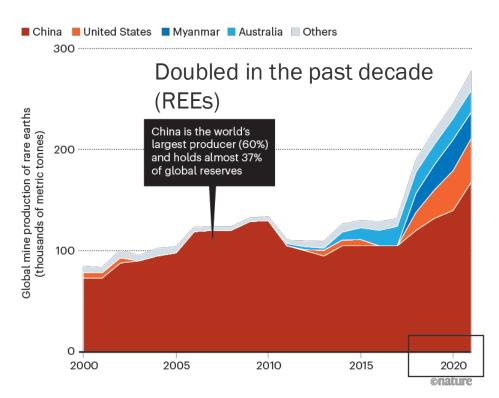
Projected Material Demand: Increase Significantly

Emerging material has to model through sensitivity test

Will Data Centres Increase Our Dependence on Certain Countries for Critical Minerals?

A Small Contribution, but One That Could Still Deepen Existing Pressures

CRM	Import Reliance	EU consumption in 2020 ^a	Others in 2050 (EU) ^b	DC Demand (Europe) in 2050
Bauxite (E)	89 %	16,146,077		
Aluminium (P)	58 %	4,980,933	110,000 - 130,000 (PVs)	106,065
Nickel (E)	31 %	78,084	85,000 – 163,662 (Wind	2.022
Nickel (P)	75 %	257,147	Turbine)	2,023
Palladium		20 (In 2024=39)	2 (ICT Devices)	13.60
Platinum	High	72	5-50 (Fuel cells for e-	0.29
Ruthenium	riigii		mobility)	
		17.25	1-2 (Electrolyser)	0.31



Rethinking Material Security as Demand Rises and for Environment: Shifting from More Mining to More Reuse

Circular Economy: Emphasis on Reusing and Recycling Materials

rather than relying on the continuous expansion of raw material extraction

Less than 1% are currently recycled

Each tonne of REEs minning generates

- 9600-12000m³ of gas containing sulphur dioxide
- 1.4 t of radioactive waste
- 1000 t of wastewater
- 2000 t of toxic mining waste

Cutting

- ✓ Emissions
- ✓ Pollution
- ✓ Supply risk and
- ✓ E-waste (in longer terms)

requires systemic design and data visibility across the ICT sector

Beyond Recycling: Other Circular Economy Strategies

Close (loop material back into use)

Recycle

Recover

Slow (Extend product life)

Reuse

Repair

Refurbish

Remanufacture

Repurpose

Narrow (Reduce resource use)

Refuse

Rethink

Reduce

Data Centre

CE Strategies	CE
Zombie server removal (unused or idle servers)	Narrow
Consolidation (combining workload-fewer physical machines)	Narrow
Design efficiency (lightweight, modular)	Narrow
Lifetime extension (physical lifespan vs economic or reliability lifetime)	Slow
Redeployment/ cascade (older servers for lower priority workloads	Slow
Recycling	Close

Next: Explore its **implication on embodied energy & GHG** (and beyond) and the potential of **circular economy in mitigating**

Key messages

• ICT must embody sustainability — not dismiss this responsibility by saying it enables it elsewhere.

- Direct DC footprint is real but small versus major emitting sectors.
- The indirect footprint (e.g. on the applied sector) of digitalisation may be larger and harder to regulate needs research attention.
- Circular economy approach is essential not enough attention

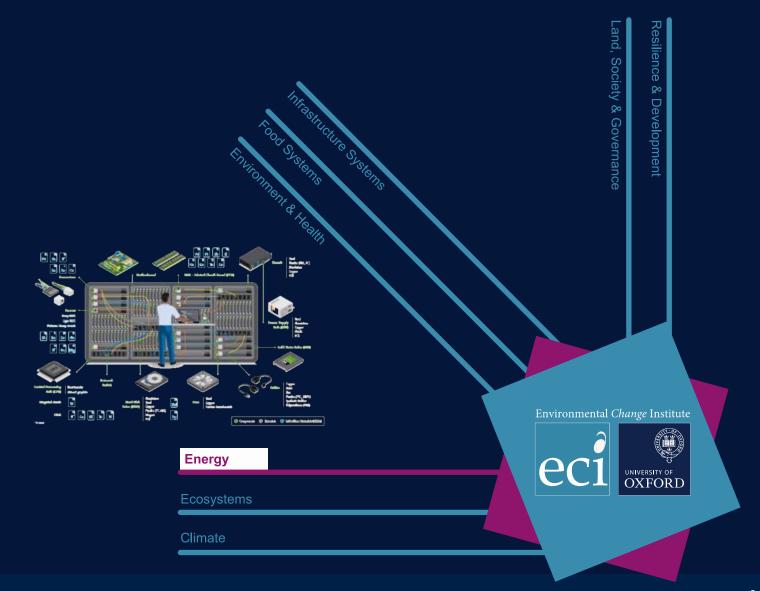
Thank you

Yee Van Fan

yeevan.fan@eci.ox.ac.uk

Environmental *Change* Institute

Oxford University Centre for the Environment


University of Oxford, South Parks Road

Oxford, OX1 3QY, United Kingdom

f facebook.com/EnvironmentalChangeInstitute

<u>twitter.com/ecioxford</u>

instagram.com/ecioxford

