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Motivation

The grid depends on balancing supply and demand. As wind replaces dispatchable
sources like gas, operators rely on accurate forecasts for unit commitments. Without re-
liable uncertainty estimates, they must risk blackouts or keep costly, carbon-heavy plants
on standby. Point forecasts ignore this uncertainty, creating demand for probabilistic out-
puts. Yet common methods (MCMC, ensembles, or Bayesian approaches) often lack
coverage guarantees, impose strong assumptions, or require expensive training.

Goal: We want to develop predictive intervals that have
valid coverage guarantees, with minimal assumptions.
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Conformal Prediction (Vovk et al., 2005)

Conformal prediction is a model-agnostic framework that converts any point predictor
into a prediction interval with guaranteed coverage. It has seen wide success, from LLMs
to image classification, with split conformal prediction (SCP) being the most common
and practical variant.

Point Estimator Conformal Prediction Probabilistic Output

fx y P(Yn+1 ∈ Cα(Xn+1)) ≥ 1 − α fx ŷ

1.
Nonconformity

Score

Measure how un-
usual a prediction is.

2.
Calibration

Use a held-
out dataset.

3.
Compute Scores

Get scores for
all points.

4.
Quantile Threshold

Take the 1 − α-
th percentile.

5.
Prediction Interval

Final interval
= prediction
± threshold.

This involves gathering residual non-conformity scores (often absolute errors) from a cal-
ibration set and forming a predictive set via the empirical quantile. Under the assumption
of exchangeability (data points are order invariant) this guarantees coverage of at least
1 − α. But wind power time series are volatile and temporally dependent, breaking this
assumption.

But: Classic CP assumes data points are independent or ex-
changeable. Wind is not - it’s volatile and correlated over time.

Adaptive Conformal Inference (Gibbs & Candes, 2021)

This is especially apt for grid operators in online forecasting, where conditions change
constantly and retraining models isn’t always feasible. The method adapts the α-quantile
through online optimization:

αt+1 = αt + γ
(
α− I

y /∈Ĉ(xt)

)
,

where α is the user specified miscoverage (e.g 10%), αt is the adaptive quantile based
on previous miscoverage, and γ the learning rate, governing the speed of adaption.

Reducing sensitivity to learning rate

• Expert based aggregation ACI (AgACI), runs a grid of γs, and runs an optimisation
algorithm to select the optimal weighting for both upper and lower bound individually.
Empirically strong, no guarantees.

• Dynamically tuned ACI (DtACI) uses a sub-model to meta-learn the best γ from a
grid. Guarantees over some window to select the retrospective best performing γ.

Point Forecasting Models

While conformal wrappers are model agnostic, their width is only as good as the point
forecasts it contains. We demonstrate using three distinct forecasting models.

• Spatio-Temporal Graph Convolutional Network (ST-GCN) - A state-of-the-art model
chosen to capture the complex spatio-temporal dynamics of the wind farm.

• Quantile Regression Light Gradient Boosting Machine (LGBM-QR) - A commonly
used, yet extremely powerful probabilistic machine learning approach.

• Auto-Regressive Integrated Moving Average (ARIMA) - Traditional univariate sta-
tistical time series model benchmark.
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The Goal: Reliable &
Precise

We observe both empirical coverage (proportion of time the true value is within the
prediction interval, with 90% target) and the interval width. This is an inherent trade-off
between operationally useful intervals and reliable ones.

Case Study: Kelmarsh Wind Farm

• Location: 12.3MW Kelmarsh Wind
Farm, Northamptonshire, UK.

• Data: 2 years (2022–2024) of on-site
SCADA & NWP forecasts.

• Evaluation: online, expanding-
window evaluation on a 1-year test
set.
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• ACI-based methods (•,▲,♦) hit the 90% coverage target, unlike the non-adaptive on-
line SCP baseline (■) and Quantile Regression (⋆), which under-cover.

• The stronger ST-GCN forecaster yields sharper intervals than ARIMA, showing the
importance of the underlying point forecast.

Key Points

• Adaptive Conformal Inference (ACI) delivers reliable 90% intervals where stan-
dard methods fail.

• Better base forecasts (e.g., ST-GCN) yield sharper, more useful intervals.

• Trustworthy uncertainty improves grid stability and speeds renewable integration.
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