Utilising Multi-Modal Spectroscopy to Probe Detrimental Charge-Carrier Recombination via Retaining Trap States in CsPbBr₃

Joshua R. S. Lilly¹, Vincent J.-Y. Lim¹, Yuliia Kominko^{2,3}, Gebhard J. Matt^{2,3}, Vitalii Bartosh^{2,3}

Qimu Yuan¹, Maksym V. Kovalenko^{2,3}, Michael B. Johnston¹, Laura M. Herz^{1,4,*}

Introduction

- CsPbBr₃ is an inorganic semiconductor that has been utilised as an active material in a range of functional devices, including solar cells [1].
- However, the performance of these devices can often be limited by detrimental charge-carrier recombination via trap states.
- In this study, we investigate charge-carrier recombination via retaining traps through application of a dynamic model to concurrently acquired timeresolved photoluminescence (TRPL) and time-resolved microwave photoconductivity (TRMC) transients.

Retaining Trap States **Trapping Escape** rate rate

- CsPbBr₃, significant recombination occurs via retaining trap states \rightarrow attributed electron bromide capture at interstitial defects [2]
 - The 'retaining' nature of the trap causes a electron remanent hole population clear form spectroscopic signature

Multi-Modal Spectroscopy **Pulsed** Trigger **Excitation** Microwave **Photoluminescence** Fluence Control **Probe** MW**Detector** Antenna Spectrometer Oscilloscope **Spectrally-Resolved Time-Resolved** Time-Resolved **Photoluminescence** Microwave Conductivity **Photoluminescence**

Process Engineering

Enhanced Film Enhanced Deposition Technique Stoichiometric Control Crystallinity Thermal Co-Evaporation from Dual Source (reference) Thermal Co-Evaporation from Single Crystal Source Confined Melt Fabrication from Single Crystal Source

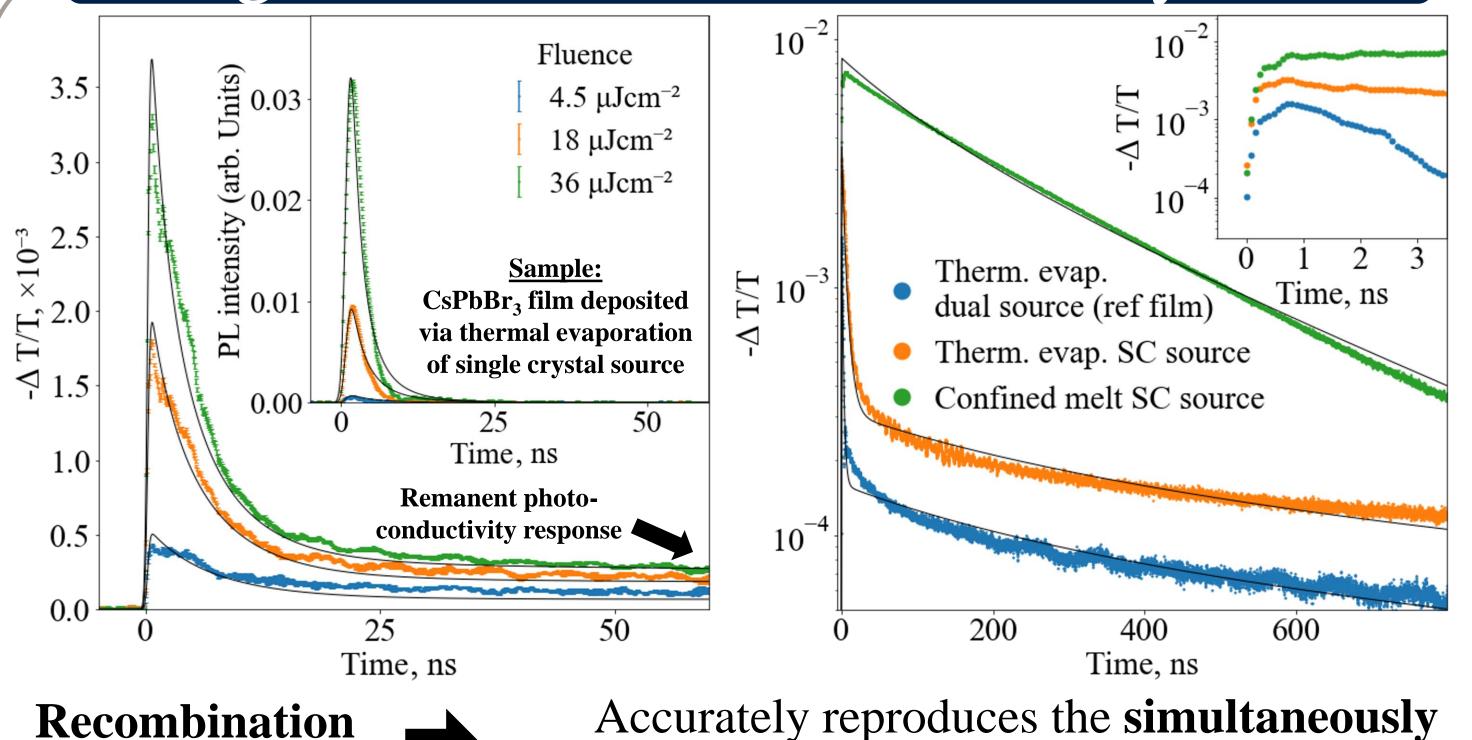
- **Improved stoichiometric control** \rightarrow inhibit formation of Br_i?
- crystallinity investigate preferential defect formation of Br_i at grain boundaries?

Dynamic Recombination Model

$$\frac{dn(t)}{dt} = -k_{\text{Bi}}n(t)p(t) - k_{\text{M}}n(t) - k_{\text{T}}n(t)$$

$$\frac{dn_{\text{T}}(t)}{dt} = k_{\text{T}}n(t) - k_{\text{E}}n_{\text{T}}(t)p(t)$$

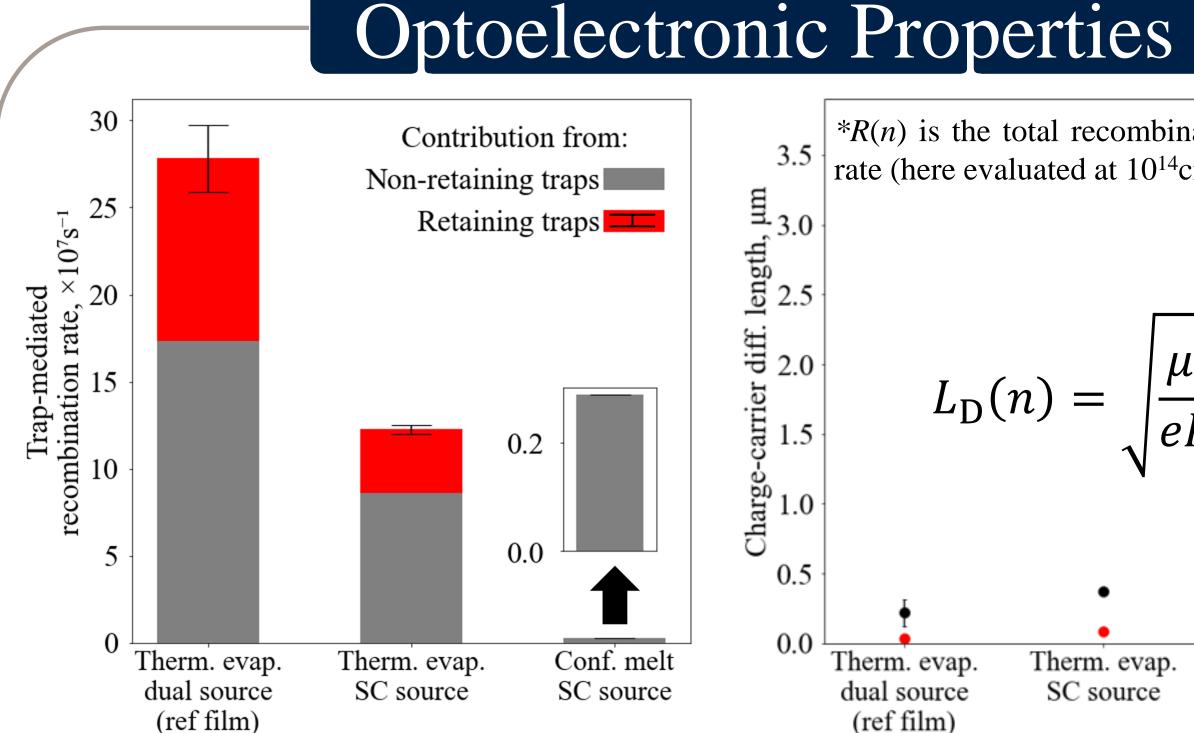
$$p(t) = n(t) + n_{\text{T}}(t)$$


 $-\frac{\Delta T}{T}(t) \propto \frac{n(t) + p(t)}{2}$ $I_{\rm PL}(t) \propto k_{\rm Bi} n(t) p(t)$

 $k_{\rm T}$ is the rate at which electrons are captured into retaining trap states

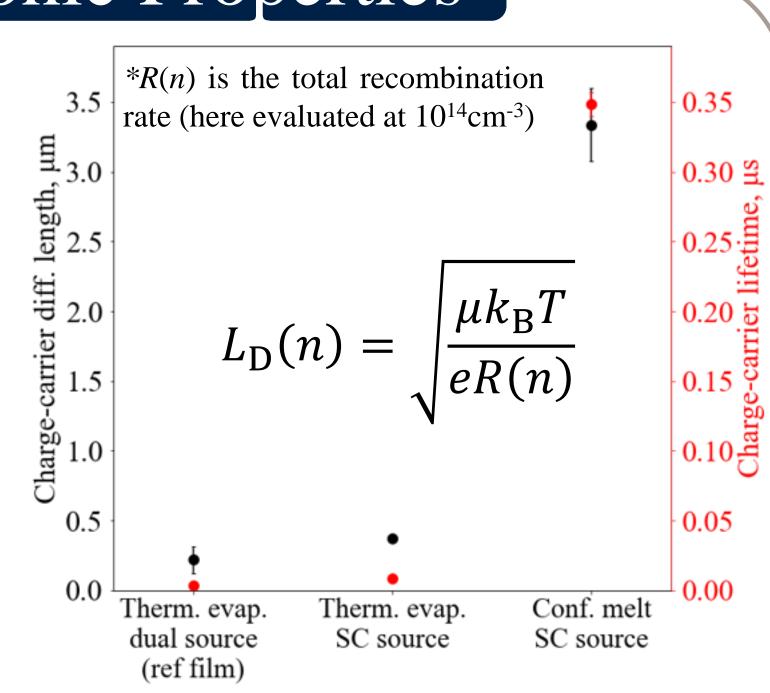
For optimal device performance, we want to minimise $k_{\rm T}$

Charge-Carrier Recombination Dynamics


Accurately reproduces the **simultaneously** acquired TRPL and TRMC decay transients

Remanent photoconductivity response

model


Indicative of substantial recombination via retaining trap states

Present for both films fabricated via thermal evaporation

Rate of retaining-trap-mediated recombination for film fabricated via confined melting of SC source

For the CsPbBr₃ film fabricated via confined melting of a SC source:

- Charge-carrier lifetime: >300ns
- Charge-carrier mob.: >10cm²V⁻¹s⁻¹
- Charge-carrier diff. length: >3µm

Conclusions

- When solely utilising enhanced stoichiometric control methods (SC source) \rightarrow only minor reduction in rate of recombination via retaining trap states observed
- However, we have evidenced that in highly-crystalline films (fabricated via confined melting of SC source), recombination via halide interstitial defects can effectively be completely eliminated \rightarrow excellent optoelectronic performance
- Consequently, it is suggested that halide interstitial defects have a propensity to form near grain boundaries \rightarrow potential link to ion migration dynamics [3]

Related Projects

- The film fabricated via confined melting of a single crystal source was used as an active layer in a novel photodetector design → reduced rate of trap-assisted recombination **allowed** exceptional device performance to be achieved [4]
- Utilising the above multi-modal spectroscopy suite \rightarrow performance-limiting associated with trap-states Ruddlesden-Popper defects were identified in CsPbI₃ [5]

- Department of Physics, University of Oxford, UK
- 2. Department of Chemistry and Applied Biosciences, ETH Zürich, Switzerland
- 3. Empa, Dübendorf, Switzerland
- Institute of Advanced Study, Technical University of Munich, Germany
- Corresponding Author
- **Research Council**

Engineering and Physical Sciences

- [1] D. N. Dirin et al., Chem. Mater. 28, 23 (2016)
- [2] A. M. Ulatowski et al., Adv. Func. Mater. 33, 51 (2023)
- [3] Y. Zhou et al., Adv. Mater. 36, 2305567 (2023)
- [4] G. J. Matt, ..., J. R. S. Lilly et al., Submitted
- [5] W. Li,..., **J. R. S. Lilly** *et al.*, Adv. Mater. 37, 2501788 (2025)