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Static Climate Finance Goals vs. Evolving Investments

Prevailing narratives on climate finance emphasize a persistent funding gap between

actual investments and the ambitious targets set by international agreements (e.g.,

$100B/year from COP15, $1.3T/year by COP29). However, these static targets of-

ten overlook the dynamic trajectories through which investments scale over time.

Figure 1. The left figure shows the financing flows going into developing countries with exponential

projection and the COP29 NCQG target; The right figure shows the global capacity growth and the

COP28 target.

Investment in the energy system—themost critical component of the transition—is grow-

ing at an annual rate of 14%. Within this, mitigation-related investments, which account

for over 94.5% of total energy transition spending, are increasing more slowly at 13% per

year, while adaptation investments are growing at 21% annually. Notably, investments

targeting the energy system itself are expanding at an exceptional 60% per year.

In absolute terms, the energy system received roughly $1.74 trillion, averaging 30% of

total annual energy transition investments. Of this, $0.79 trillion (46.4%) went to solar

and $0.67 trillion (40.2%) to wind. Renewable energy capacity, particularly in solar and

wind, continues to rise exponentially, reflecting both rapid deployment and scale.

Given that capacity has historically followed exponential growth patterns, assuming a

constant annual investment is unrealistic. Capturing the evolving dynamics of the en-

ergy transition requires modeling approaches that account for time-varying investment

trajectories, growth rates, and technology deployment [1, 3]. Such models are especially

important for analyzing policy interactions, which can significantly influence investment

behavior and capital allocation across technologies [2]. Explicitly modeling these dy-

namics enables a clearer understanding of how firms respond to changing market and

policy conditions and how these responses shape the long-term evolution of the energy

system. In particular, technology adoption typically follows an S-shaped path, which di-

rectly shapes investment trajectories.

Data Gaps & Inconsistencies

Tracking global energy investment is challenging because multiple organizations col-

lect data using different scopes, methodologies, and definitions. Major sources in-

clude the IEAWorld Energy Investment reports, CPI’s Global Landscape of Climate Finance,

IRENA’s Renewable Energy Statistics and Renewable Power Generation Cost Database,

BloombergNEF Energy Transition Investment Trends, REN21’s Renewables Global Status

Report, Ember, and OWID. While these datasets provide valuable insights, they are of-

ten not directly comparable.

A key challenge is the measurement of private finance, which accounts for about 70%

of global energy investment but remains opaque. Limited disclosure leads to under-

reporting and inconsistent aggregation. For example, CPI estimated renewable power

investment at $553 billion in 2022, while IEA reported $608 billion, reflecting differ-

ences between tracking financial commitments (CPI) and capital expenditures (IEA).

Further inconsistencies arise from inclusion rules: some sources report only renewables,

while others include nuclear or classify technologies differently. These divergences cre-

ate gaps and discrepancies that obscure a coherent picture of global energy finance.

What is required for dynamic investment modelling?

Implementing the ABM requires integrating data from three key domains:

Power Plants: Annual costs (CapEx and OpEx), annual capacity factors, location,

ownership, lifetime, commissioning year, and retirement year.

Firms: Portfolio composition and evolution over time, including the number and

types of assets held, as well as investment strategies across different technologies.

Electricity Markets: Market demand, regulatory structure (regulated

vs. liberalized), and dispatch rules that allocate demand across generation assets.

Sources: IEA (2025), World Energy Investment 2025, IEA, Paris https://www.iea.org/reports/world-energy-investment-2025, Licence: CC BY 4.0; Climate Policy Initiative. 2025.

Global Landscape of Climate Finance 2025. https://www.climatepolicyinitiative.org/publication/global-landscape-of- climate-finance-2025; IRENA (2025), Renewable energy

statistics 2025, International Renewable Energy Agency, Abu Dhabi; IRENA (2025), Renewable power generation costs in 2024, International Renewable Energy Agency, Abu Dhabi;

REN21. 2024. Renewables 2024 Global Status Report Collection, Global Overview.

Firm- and Asset-Level Data for Dynamic Investment Modeling

To address these inconsistencies and requirements, we shift to firm- and asset-level

data from S&P Capital IQ and Rystad Energy. The proposed agent-based model (ABM)

relies on one-to-onematchingwith real firms and projects, capturing financing structures

and investment decisions at a granular level. This provides a more reliable foundation

for representing how investment dynamics evolve over time, beyond what aggregated

figures can offer. Below is a summary table of two main data sources we rely on for the

energy ABM.

Firms Assets Power Plants Tech. Categories

Capital IQ 28,461 136,454 72,739 12

Rystad 23,514 210,854 201,231 15

Table 1. Overview of firm- and asset-level data from Capital IQ and Rystad Energy used for the ABM.

Due to the data quality and availability, we restricted the data from 2001 to 2023.

Agent-Based Model of Energy Investment Decisions

The model captures firms’ investment in energy assets. Firms own power plants that

operate in energy markets, generating profits or losses. Investment decisions depend

on past performance, expectations about demand, prices, technology costs, and policy,

making them responsive to energy policies [4].

Model Outputs: Technology Shifts and Investment

The figures illustrate how an output-based pricing system alters firms’ technology port-

folios and long-term investment trajectories. In the no-policy case (upper panels), firms

maintain a relatively stable reliance on fossil fuels (coal and gas), with onlymodest growth

in renewables. This inertia in investment behavior results in continued capital flows to

carbon-intensive technologies, which even increase toward the latter half of the forecast

horizon.

By contrast, under the policy scenario (lower panels), firms shift investment more de-

cisively toward low-carbon technologies, particularly wind and solar PV. This structural

change in the fuel mix is mirrored by a significant and sustained redirection of cumula-

tive investment toward renewables. While some diversification reappears in later years,

overall investment remains markedly more concentrated in clean energy compared to

the no-policy trajectory.

Figure 2. Projected evolution of firms’ investment behavior over the next 50 years under two scenarios

with sample data. Left panels depict the fuel mix composition, with the top panel showing the baseline

without policy intervention and the bottom panel illustrating the scenario with policy intervention. Right

panels show the corresponding trajectories of cumulative billion-dollar investments for each scenario.

References
[1] Robert L Axtell and J Doyne Farmer. “Agent-based modeling in economics and finance: Past, present, and future”. In:

Journal of Economic Literature 63.1 (2025), pp. 197–287.

[2] Sam Fankhauser et al. “The meaning of net zero and how to get it right”. In:Nature climate change 12.1 (2022), pp. 15–21.

[3] Cameron Hepburn et al. “Economic models and frameworks to guide climate policy”. In: Oxford Review of Economic Policy

(2025), graf020.

[4] Inc. Macrocosm. Macrocosm Energy Investment Model, Version 2.1. https://www.macrocosm.com/energy-model.
Proprietary software. Copyright © 2024 by Macrocosm Inc. 2024.

The 13th Oxford Energy Day, 2025 yan.yu@ouce.ox.ac.uk

https://www.macrocosm.com/energy-model
mailto:yan.yu@worc.ox.ac.uk

