

Energy Consumption in Higher Education Buildings: Bridging the Performance Gap Using Digital Twin Technology

Laurence Peinturier

MSc Energy Systems 2022-2023 DPhil Engineering Science

Background

HEIs: 2% of total building stock, yet 2nd highest energy-intensive sector

Digital Twin Technology

The Andrew Wiles Building

The Andrew Wiles Building

EPC before construction

~ 30.5 kgCO2/m2/year

University of Oxford Andrew Wites Building (550) The Raddite Observatory Quarter Woodstock Road Oxf ORD Oxf ORD			erational rating	Cert Valio Tota	fficate number: d until: l useful floor area:	0690-4512-9112 31 August 2023 21,180.47 squar	2-0600-989 re metres	92
Energy perfo	Energy performance operational rating				Previous operational ratings			
The building's energy performance operational rating is based on its carbon dioxide (CO2) emissions for the last year.					Date		0.00	votional votina
It is given a score and an operational rating on a scale from A (lowest			west		Jale		Ope	rational rating
The typical score for a public building is 100. This typical score gives an operational rating of D.			ives an	1	September 2022			59 C
Score	Operational rating	This building	Typical		September 2021			61 C
0-25	Α				September 2020			59 C
26-50	В				Total carbon dioxide (CO2) emissions This tells you how much carbon dioxide the building emits. It shows tonnes per year of CO2.			
51-75	C	59 C			Date	Electricity	Heating	Renewables
76-100	D			4	September 2022	775	186	2
			100	4	September 2021	800	234	4
101 105	E				September 2020	764	204	0
101-125				As	sessment details			
126-150	F			As	sessor's name	Jon Cranefield Manager	d MEI Cha	rtered Energy
150.	C			Em	ployer/Trading name	AA Projects Lt	td.	
150+	G			Em	ployer/Trading address	6 Lloyd's Aver	nue, Londo	m EC3N 3AX
This buildir	ng's energy use			As	sessor's declaration	Not related to	the occup	ier.
Energy use	9	Electricity	Other fuels	Ace	creditation scheme	Elmhurst Ener	rgy Systen	ns Ltd
Annual ene (kWh/m2/y	ergy use rear)	66.54	45.26	Iss	ue date	6 October 202	22	
Typical energy	ergy use	73.16	186.59	No	minated date	1 September	2022	

DEC for 2022

As-Built DT Configuration

As-Built DT Configuration

Occupancy Profile - Weekday

Occupancy Profile - Weekend

Operational DT Configuration

Metered electricity consumption 2022

- Unregulated Loads
- IT Services (Power + AC)
- Ventilation Services
- Heating Services
- Cooling Services

Identified equipment and control failures:

- Photocell sensors
- VAV boxes
- Heating water pumps running
- during summer
- Louvred panels

Challenges:

- Heating and cooling services shared with neighbouring building

Simulation Results – Lighting & Ventilation

Oxford e-Research Centre

UNIVERSITY OF

OXFORD

Ventilation

Potential savings: 229 MWh/year or £69,700/year

Recommendations:

- Ensure photocell sensors are working as they should
- Repair VAV boxes

Simulation Results – Heating & Cooling

Oxford

e-Research Centre

UNIVERSITY OF

OXFORD

Heating - Gas 200 Gas Consumption (MWh) 160 120 80 40 0 Feb Aug Sep Oct Nov Dec Jan Apr Mav Jul Mar Jun As-built Operational Metered

Cooling - Electricity

Simulation Results – Louvred Panels

Decrease of 2°C in indoor office temperature during summer

Comparison with Benchmarks

FINAL RECOMMENDATIONS:

- Repair photocell sensors
- Repair VAV boxes
- Shut down heating water pumps running during summer
- Repair louvred panels

Gas

- DT energy simulations are a valuable tool to identify energy performance gaps in operational university buildings

- Building managers can assess the performance of their building and quantify energy savings associated to energy-efficient intervention measures

- Trade-off between simulation results accuracy and input data granularity

Thank you!

Questions?

Techno-economic optimisation of the green H₂ and green NH₃ production and distribution ecosystem for the steel and ammonia industries in South Africa and Namibia (2022-2050)

Colin Kinghorn (Researcher/Author)

- MSc Energy Systems (University of Oxford)
- BCG (2 years; focused on decarbonisation)
- Completing MSc in Digital & Social Change (University of Oxford) as a Rhodes Scholar and running cleantech financing startup

zero emission

So what?

Professor Rene Bañares-Alcántara (Supervisor)

- Reader in Department of Engineering Sciences (University of Oxford)
- Leads Oxford Green Ammonia Technology Group (OXGATE)

1. Why?

Southern Africa

as a 'developing

economy

decarbonisation

blueprint'

Southern Africa's green e-fuels play matters for global energy security, affordability and sustainability...

South Africa to get \$8.5 bln from U.S., EU and UK to speed up shift from coal

Ramaphosa said that the agreement marked a "watershed momen he world, while von der Leven that the "just energy transition partnership" could provide a blueprint f

 Clean energy is driving a shift away from centralised global energy supply towards regional energy hubs

• Chile, South Africa, and Namibia likely to form a **2nd tier of** globally competitive supply (behind Australia, Saudi Arabia, & Morocco) given their strong RE cost potential & land availability but higher WACC (Moritz, et al., 2023)

RWE has announced plans for a \$9.7 Bn GNH₃ investment in Namibia – how can benefits be captured locally?

 South Africa is the 14th highest emitting country, is arguably the most industrialised country in sub-Saharan Africa & possesses significant 'hard-to-abate' steel and chemicals assets that are likely viable GH₂/GNH₃ use-cases (this makes it a strategic 'testing ground' for developing-nation decarbonisation funding approaches)

If SA industry fails to decarbonise, 32% of export earnings & 18 000 local jobs at risk of CBTs (BCG, 2021) & the surrounding SADC region contains 4 of the 11 poorest countries, making its integration into the green economy a developmental priority

1. Why?

...however, lack of a rigorous least-cost optimisation at an integrated system level may limit sophistication of planning

No integrated, technically rigorous GH_2 / GNH_3 production & delivery ecosystem ramp-up optimisation that addresses SA National GH_2 Commercialisation Strategy calls for "analysis of the optimal mix of electricity and molecules for transportation between production and load centres aligned to export, decarbonisation and energy uses of GH_2 "

- Production cost studies estimate LCOH/LCOA for specific sites but do not use sophisticated optimisation techniques across region
- No national-scale production site scale-up optimisation (considering multiple time scales and demand scenarios)

No SA-specific delivery costings that trade-off molecule versus electricity transmission at a systemlevel and consider issues of competitiveness, lock-in and pathway dependence for varying WACC, demand, and technology cost scenarios

This study presents a 2050 net-zero, least-cost ramp-up optimisation for regional green H₂/NH₃ production & delivery across 12 scenarios

Three key questions answered for 2022-2050 period

		Low learning rate (NREL)			
	WACC	4%	7%	11%	
Demand	'NZ Base'			'Pessimistic'	
Scenarios	'Green Hub'				

The energy system was modelled hourly to meet temporal and volumetric supply requirements and optimised using a MILP approach

System optimised for lowest total delivered cost between supply, intermediate port, and demand nodes (2022-2050)

Three constraints applied to optimisation to improve validity of model

- In each year, the incremental demand of each demand node is met in full and supply-demand node pairs maintained over period
- Ports supply as much as they are supplied, thereby not acting as either supply node or demand node
 - Supply node capacity only added if supply node exceeds minimum capacity allowed by linearisation to avoid linearisation errors

Optimisation inputs

- 1. Local steel, ammonia, & marine fuel demand outlooks
- 2. Global import demand outlooks
- 3. Potential local supply node locations

Hydrogen H2

4. Technology cost outlooks

Local demand outlooks for each scenario include steel, marine fuel oil, and fertiliser applications

Local GNH₃ demand for marine and fertiliser applications (MMtpa)

Local GH₂ demand for steel application (MMtpa)

Key drivers:

•	South African steel production				
	outlook (either remains in				
	structural decline or revitalised				
	given 'green steel' cost advantage)				

Penetration of green production methods in line with IEA SDS global projection

Export demand outlooks for each scenario include export to countries with announced import targets with NH₃ as carrier

Southern Africa GNH₃ export demand (MMtpa) – only countries with announced import targets included

—Green Hub—NZ Base—IEA - NZ—Argus Media—IRENA—McKinsey —DNV

	Key drivers:
- 30.6	 Import targets set by South Korea, Japan, Germany, and the UK
19.5	 Southern African capture of global import demand (2.5%-5% and dependent on geographic
- 15.3 ₋ 7.2	proximity, availability of other low- cost supply, and historical energy trade ties between Southern Africa and importing countries)
5.1 4.6 3.6	
050	

Locations of demand nodes allocated based on existing and planned local assets and import port locations

Local GH₂ & GNH₃ demand node locations for steel, marine and fertiliser applications (MMtpa)

2. How?

Export GNH₃ demand to countries with announced import targets (MMtpa)

Potential supply nodes included based on existing/planned projects and renewable energy potential

Local GH₂ & GNH₃ potential supply node locations (to be considered in optimisation) layered onto GIS analysis of combined solar PV and wind capacity factors at 5km² resolution to select promising locations

Three criteria for potential supply node inclusion:

Potential supply nodes included for each green GH_2/GNH_3 production project planned and listed in the latest Government Gazette

OR

Potential supply nodes included near each demand node (such as ports and industrial production facilities) to simulate 'on-site' production

OR

Potential supply nodes placed in locations possessing extraordinarily strong renewables potential – based on GIS raster calculation

Two delivery modes considered in the optimisation model to connect supply and demand nodes

Energy delivery by new-build electricity transmission & pipeline compared

Production and storage input costs developed for different WACC scenarios and using two learning rate benchmarks

Total annualised cost projection of production and storage technologies for GH₂/GNH₃ (USD/kW installed)

- 2022 'starting costs' based on NREL empirical baseline
- **NREL Annual Technology Baseline** (Advanced Scenario) learning rates considered pessimistic given consistent underestimation of learning rates in the past
- Way et al provides more 'optimistic' outlook that attempts to correct for previous IEA and IRENA learning rate underestimations through an empirically grounded approach

Input delivery costs developed by interpolating empirical studies

Total annualised cost of delivery for GH₂/GNH₃ pipeline transmission

Total annualised cost of delivery for electricity transmission

On-site supply is dominant least-cost configuration, but offsite viable in high WACC & pessimistic learning rate scenarios

'Likely' and 'fringe' optimal supply-demand node matching by use case (2050 view)

3. Results

Local GH₂

Local NH₃

SaldanhaPort 28.17% NguraPort 25.28% RBPort 22.18% DurbanPort 9.51% CTP ort 7.04% SecundaSite 4.47% SasolburgSite 3.35% Only in some high WACC SaldanhaPort 28.17% - high volume and hightech. cost – high volume cases NguraPort 25.28% RBPort 22.18% DurbanPort 9.51% CTPort 7.04% SecundaSite 4.47% SasolburgSite 3.35%

Demand node

Walvis Bay, northern Namibia selected as least-cost supply option to all import demand nodes across scenarios

Export NH₃

Local steel: constant supply requirement makes storage a major cost component and increases cost variation between sites

3. Results

Pipeline delivery cheaper than electricity transmission for all demand nodes in 2050

Optimal DLCOH by demand node (USD/kg $H_2 - 2050$)

'Optimistic' 'Moderate' 'Pessimistic' scenario scenario scenario Electricity transmission only competitive w/ pipeline at volumes below 5 ktpa (during pre-2040 ramp-up) SaldannaPort Secundasite JanderbillAMSA Newcastleamsa Secundasite SaldanhaPort VanderbillAMSA Newcastleansa Secundasite SaldannaPort

- Delivery pipe.
- Production pipe.
- Delivery trans.

3. Results

Local fertiliser & marine fuel: no constant supply requirement means less cost variation between supply sites

Lower variation in LCOP/S than steel use-case but production Similarly, pipeline delivery cheaper than electricity costs can double w/ poor WACC and technology cost conditions transmission for nearly all demand nodes

LCOP/S by potential supply node (USD/tonne $NH_3 - 2050$) \$1 000 \$1 000 \$800 \$800 \$600 \$600 \$400 \$400 \$200 \$200 \$-\$-SaldanhaPort SasolburgSite Prieska VdBijl Durban Nqura Tsau Boegoebaai Newcastle Secunda Saldanha Dolphin Potmasburg Ubuntu Sasolburg 5 H2 storage RE NH3 storage Battery storage Electrolyser Fuel cell ······ Fasihi et al. (2021) Roos (2021) Haber-bosch ---- Lower bound

Production - pipe.

– Delivery - trans.

Delivery - pipe.

3. Results

Export GNH₃: Namibia could deliver exported GNH₃ for less than \$550/tonne in 2030 and \$300/tonne in 2050

WACC, demand, and learning rate evolutions will have material impact on topography of least-cost infrastructure plan

4% WACC, High dem., High learning

4. So what?

7% WACC, else same

11% WACC, Low dem., Low learning

 H_2 pipeline

Bringing down RE project WACC is crucial to reduce least-cost planning sensitivity to learning rate uncertainties

4. So what?

IRA-style production tax credit would bring GH_2 / NH_3 2030 delivered cost to grey-parity in most scenarios

4. So what?

This MILP optimisation builds on the current National GH_2 4. So what? Commercialisation Strategy in four ways

References (full study reference list included in report)

Argus Media, 2021. ARGUS Green Ammonia Strategy Report, s.l.: s.n.

Ayodele, T. & Munda, J., 2019. Potential and economic viability of green hydrogen production by water electrolysis using wind energy resources in South Africa. International Journal of Hydrogen Energy, Volume 44, pp. 17669-17687. BCG, 2021. Decarbonisation of South Africa's Petrochemicals and Chemicals Sector, Johannesburg: National Business Initiative; Boston Consulting

Group.

BCG, 2021. Decarbonising South Africa's Heavy Manufacturing Sector, Johannesburg: National Business Initiative (NBI); Boston Consulting Group. Bofinger, S., Zimmermann, B., Gerlach, A. & Bischof-Niemz, T., 2016. Wind and solar PV resource aggregation study for South Africa: Public presentation of results, Johannesburg: CSIR, SANEDI, ESKOM, Fraunhofer IWES.

DEFF, 2021. National Environmental Management Act, Gazette No. 44191, Pretoria: DEFF.

DeSantis, D. et al., 2021. Cost of long-distance energy transmission by different carriers. *iScience*, 24(12).

DNV GL, 2020. Maritime Forecast to 2050: Energy Transition Outlook 2020, s.l.: s.n.

DSI, 2021. Hydrogen Society Roadmap for South Africa 2021, Pretoria: DSI.

DTIC, 2020. The South African Steel and Metal Fabrication MasterPlan 1.0, Pretoria: DTIC.

DTIC, 2022. Green Hydrogen Commercialisation Strategy for South Africa, s.l.: Department of Trade, Industry, and Competition.

Eskom, 2022. The Eskom Transmission Development Plan (2023-2032), Johannesburg: Eskom.

Government of South Africa, 2022. *Government Gazette: 47658,* Pretoria: Government Printing Works.

IEA, 2019. The Future of Hydrogen: Seizing today's opportunities, Paris: s.n.

IEA, 2021. Ammonia Technology Roadmap, Paris: IEA.

IEC, EPRI, & PWC, 2021. Hydrogen Demand and Cost Dynamics, London: International Energy Council. IHS Markit, 2021. Super H2igh Road for South Africa, Johannesburg: Agora Energiewende.

JNIVERSITY OF

References (full study reference list included in report)

Moritz, M., Schonfisch, M. & Schulte, S., 2023. Estimating global production and supply costs for green hydrogen and hydrogen-based green energy commodities. International Journal of Hydrogen Energy, Volume 48, pp. 9139-9154.

NREL, 2021. Annual Technology Baseline, s.l.: NREL.

NREL, 2021. Annual Technology Baseline, s.l.: NREL.

PyPSA, 2023. PyPSA Introduction. [Online] Available at: https://pypsa.readthedocs.io/en/latest/introduction.html

Roos, T., 2021. The cost of production and storage of renewable hydrogen in South Africa and transport to Japan and EU up to 2050 in different scenarios. International Journal of Hydrogen Energy, Volume 46, pp. 35814 - 35830.

Roos, T. & Wright, J., 2021. *Powerfuels and Green Hydrogen (public version)*, Brussels: European Union Salmon, N., Nayak-Luke, R. & Banares-Alcantara, R., 2021. Optimization of green ammonia distribution systems for intercontinental energy transport. *iScience*, 24(8).

Trollip, H., Mccall, B. & Bataille, C., 2022. How green primary iron production in South Africa could help globaldecarbonization. Climate Policy, 22(2), pp. 236-247.

US Department of the Treasury, 2023. U.S. Department of the Treasury, IRS Release Guidance on Provisions to Expand Reach of Clean Energy Tax Credits Through President Biden's Investing in America Agenda, Washington D.C.: s.n.

Way, R., Ives, M., Mealy, P. & Farmer, J., 2022. Empirically grounded technology forecasts and the energy transition. Joule, Volume 6, pp. 1-26.

zero emission

NIVERSITY OF