

Hoye Group Chemistry of Sustainable Materials

# Innovations in Photovoltaics: 2023 UK PV Roadmap

Prof. Robert Hoye

### **Hoye Group – Recent Works**



Hoye, *et al. Adv. Mater.* **29**, 1702176 (2017)

Adv. Energy Mater. **11**, 2002761 (2021)

Andrei, Jagt, ..., Hoye, Reisner, *Nat. Mater.* **21**, 864 (2022)

Jagt, Bravić..., Hoye, *Nat. Commun.* **13**, 4960 (2022)



# **2020 Materials for Photovoltaic Systems Roadmap**

### Roadmap with Henry Royce Institute



https://tinyurl.com/3jaaea2u





Article type: Roadmap

#### Roadmap on Photovoltaic Absorber Materials for Sustainable Energy

#### Conversion

James C. Blakesley,<sup>1,†</sup> Ruy S. Bonilla,<sup>2,†</sup> Marina Freitag,<sup>3,†</sup> Alex M. Ganose,<sup>4,†</sup> Nicola Gasparini,<sup>4,†</sup> Pascal Kaienburg,<sup>5,†</sup> George Koutsourakis,<sup>1,†</sup> Jonathan D. Major,<sup>6,†</sup> Nakita K. Noel,<sup>5, †</sup> Bart Roose,<sup>7, †</sup> Ludmilla Steier,<sup>8 †</sup> Jae Sung Yun,<sup>9, †</sup> Simon Aliwell,<sup>10</sup> Pietro P. Altermatt<sup>2,11</sup> Tayebeh Ameri,<sup>12</sup> Virgil Andrei,<sup>13</sup> Ardalan Armin,<sup>14</sup> Diego Bagnis,<sup>15</sup> Jenny Baker,<sup>16</sup> Mathieu Bellanger,<sup>10</sup> Philippe Berrouard,<sup>17</sup> Jochen Blumberger,<sup>18</sup> Stuart A. Boden,<sup>19</sup> Hugo Bronstein,<sup>13,20</sup> Matthew J. Carnie,<sup>21,22</sup> Chris Case,<sup>23</sup> Fernando A. Castro,<sup>1</sup> Yi-Ming Chang,<sup>24</sup> Elmer Chao,<sup>25</sup> Tracey M. Clarke,<sup>26</sup> Graeme Cooke,<sup>27</sup> Pablo Docampo,<sup>27</sup> Ken Durose,<sup>6</sup> James R. Durrant,<sup>4,21</sup> Marina R. Filip,<sup>5</sup> Richard H. Friend,<sup>20</sup> Jarvist M. Frost,<sup>4</sup> Elizabeth A. Gibson,<sup>2</sup> Alexander J. Gillett,<sup>20</sup> Pooja Goddard,<sup>28</sup> Severin N. Habisreutinger,<sup>23</sup> Martin Heeney,<sup>4</sup> Arthur D. Hendsbee,<sup>17</sup> Louise C. Hirst,<sup>20,29</sup> M. Saiful Islam,<sup>2</sup> Imalka Jayawardena,<sup>9</sup> Michael B. Johnston,<sup>5</sup> Matthias Kauer,<sup>10</sup> Jeff Kettle,<sup>30</sup> Ji-Seon Kim,<sup>31</sup> Dan Lamb,<sup>32</sup> David Lidzey,<sup>33</sup> Jihoo Lim,<sup>9,34</sup> Roderick MacKenzie,<sup>35</sup> Nigel Mason,<sup>36</sup> Iain McCulloch,<sup>37</sup> Keith P. McKenna,<sup>38</sup> Sebastian B. Meier,<sup>39</sup> Paul Meredith,<sup>14</sup> Graham Morse,<sup>40</sup> John D. Murphy,<sup>41</sup> Jenny Nelson,<sup>31</sup> Chris Nicklin,<sup>42</sup> Thomas Osterberg,<sup>43</sup> Jay B. Patel,<sup>5</sup> Anthony Peaker,<sup>44</sup> Moritz Riede,<sup>5</sup> Martyn Rush,<sup>45</sup> David O. Scanlon,<sup>26,46</sup> Peter Skabara,<sup>26</sup> Franky So,<sup>47,48</sup> Henry J. Snaith,<sup>5</sup> Jarla Tiesbrummel,<sup>5</sup> Alessandro Troisi,<sup>49</sup> Craig Underwood,<sup>50</sup>

Karsten Walzer,<sup>51</sup> Trystan Watson,<sup>22</sup> J. Michael Walls,<sup>52</sup> Aron Walsh,<sup>53</sup> Lucy D. Whalley,<sup>54</sup>

#### Samuel D. Stranks7,\* and Robert L. Z. Hoye8,53,\*

### 2023 Update



### **Significant Potential of Solar Energy**





### **The Net-Zero Challenge**

- IRENA: Staying within 2 °C of pre-industrial levels requires PV deployment to increase from 0.9 TW (2021) to 2.8 TW in 2030 and 8.5 TW in 2050
- IRENA: €6 trillion investment needed between now and 2050. Bring €150 trillion in benefits (health, subsidy and climate-related savings)
- Other models: up to 70 TW of PV worldwide by 2050
- UK PV deployment needs to increase from 14 GW (2021) to 70 GW by 2035 \*

\* UK Climate Change Committee, Progress in reducing emissions (2023)



### **Rapid Decrease in Cost of Solar Energy**



### Fraunhofer Institute for Solar Energy, Photovoltaics Report (2023)



### **Photovoltaics Market**



Fraunhofer Institute for Solar Energy, Photovoltaics Report (2023)



Oxford Energy Day

### Outline

- Part 1: Key PV Technologies
- Part 2: Emerging Opportunities



# Part 1 Key PV Technologies



# **Key PV Technologies**

- Silicon
- CdTe
- Lead-Halide Perovskite
- Organic Photovoltaics
- Dye-sensitized solar cells
- Emerging inorganic solar absorbers



### **Silicon: Material and Status of Technology**



J. Phys. D Appl. Phys, 2020, 53, 493001



Oxford Energy Day

### **Silicon: Pressing Challenges and Potential Solutions**





### **Rate of Learning of PV Technologies**



### Sol. Energy Mater. Sol. Cells, 2023, 251, 112097



Oxford Energy Day

### **Lead-Halide Perovskites**



### Nat. Energy, **2017**, 2, 17009



# **Status of Technology**

KFORD



Oxford Energy Day

### Lead-Halide Perovskites: From Lab to Fab





# Part 2 Emerging Opportunities



### **Motivation to Overcome Efficiency Limit of Silicon PV**

### Solar PV System Costs 2017



https://sunmetrix.com/cost-of-solar-panels/

### Itemized list

| Item                                     | Cost per watt | Legend |
|------------------------------------------|---------------|--------|
| Profit                                   | \$0.34        |        |
| Overhead                                 | \$0.31        |        |
| Customer acquisition (Sales & Marketing) | \$0.34        |        |
| Permitting, Inspection, Interconnection  | \$0.10        |        |
| Installation labor                       | \$0.30        |        |
| Sales tax on equipment                   | \$0.09        |        |
| Supply chain cost                        | \$0.42        |        |
| Electrical BOS                           | \$0.24        |        |
| Structural BOS                           | \$0.11        |        |
| Inverter                                 | \$0.19        |        |
| Module                                   | \$0.35        |        |
| Total                                    | \$2.80        |        |

Data Source: National Renewable Energy Laboratory, U.S. Solar Photovoltaic System Cost Benchmark: Q1 2017 Benchmark



### **Perovskite-Based Tandem Photovoltaics**



### Science, 2016, 352, 307



### **Indoor Photovoltaics**





Oxford Energy Day

### **Space Photovoltaics**





## **Agrivoltaics**



# Challenges:

- Nascency in agrivoltaic systems
- Costs and incentives
- Regulatory factors

# Requirements:

- Policy greater incentives
- Sharing of best practice



# **Agrivoltaics – Organic PV**



More work needed to understand the best combination of PV technology and plants

1100



### **Other topics**

- CdTe solar cells
- Organic photovoltaics
- Dye-sensitized solar cells
- Characterisation methods and standards
- Computational Materials Discovery
- PV and solar fuels
- Sustainability of PV as a system





- Increased investment in PV research and manufacturing essential
- UK needs to engage with challenge for TW-scale PV deployment. Important for **net-zero**, **energy security**, and take part in **multi-billion pound** supply chain
- More targeted collaboration and data sharing needed
  between academia and industry
- More efforts needed to close lifecycle in PV technology and consider end-of-life strategies for new PV technologies



#### Roadmap on Photovoltaic Absorber Materials for Sustainable Energy

### **Acknowledgements**

#### Conversion

James C. Blakesley,<sup>1,†</sup> Ruy S. Bonilla,<sup>2,†</sup> Marina Freitag,<sup>3,†</sup> Alex M. Ganose,<sup>4,†</sup> Nicola Gasparini,<sup>4,†</sup> Pascal Kaienburg,<sup>5,†</sup> George Koutsourakis,<sup>1,†</sup> Jonathan D. Major,<sup>6,†</sup> Nakita K. Noel,<sup>5, †</sup> Bart Roose,<sup>7, †</sup> Ludmilla Steier,<sup>8 †</sup> Jae Sung Yun,<sup>9, †</sup> Simon Aliwell,<sup>10</sup> Pietro P. Altermatt<sup>2,11</sup> Tayebeh Ameri,<sup>12</sup> Virgil Andrei,<sup>13</sup> Ardalan Armin,<sup>14</sup> Diego Bagnis,<sup>15</sup> Jenny Baker,<sup>16</sup> Mathieu Bellanger,<sup>10</sup> Philippe Berrouard,<sup>17</sup> Jochen Blumberger,<sup>18</sup> Stuart A. Boden,<sup>19</sup> Hugo Bronstein,<sup>13,20</sup> Matthew J. Carnie,<sup>21,22</sup> Chris Case,<sup>23</sup> Fernando A. Castro,<sup>1</sup> Yi-Ming Chang,<sup>24</sup> Elmer Chao,<sup>25</sup> Tracey M. Clarke,<sup>26</sup> Graeme Cooke,<sup>27</sup> Pablo Docampo,<sup>27</sup> Ken Durose,<sup>6</sup> James R. Durrant,<sup>4,21</sup> Marina R. Filip,<sup>5</sup> Richard H. Friend,<sup>20</sup> Jarvist M. Frost,<sup>4</sup> Elizabeth A. Gibson,<sup>2</sup> Alexander J. Gillett,<sup>20</sup> Pooja Goddard,<sup>28</sup> Severin N. Habisreutinger,<sup>23</sup> Martin Heeney,<sup>4</sup> Arthur D. Hendsbee,<sup>17</sup> Louise C. Hirst,<sup>20,29</sup> M. Saiful Islam,<sup>2</sup> Imalka Jayawardena,<sup>9</sup> Michael B. Johnston,<sup>5</sup> Matthias Kauer,<sup>10</sup> Jeff Kettle,<sup>30</sup> Ji-Seon Kim,<sup>31</sup> Dan Lamb,<sup>32</sup> David Lidzey,<sup>33</sup> Jihoo Lim,<sup>9,34</sup> Roderick MacKenzie,<sup>35</sup> Nigel Mason,<sup>36</sup> Iain McCulloch,<sup>37</sup> Keith P. McKenna,<sup>38</sup> Sebastian B. Meier,<sup>39</sup> Paul Meredith,<sup>14</sup> Graham Morse,<sup>40</sup> John D. Murphy,<sup>41</sup> Jenny Nelson,<sup>31</sup> Chris Nicklin,<sup>42</sup> Thomas Osterberg,<sup>43</sup> Jay B. Patel,<sup>5</sup> Anthony Peaker,<sup>44</sup> Moritz Riede,<sup>5</sup> Martyn Rush,<sup>45</sup> David O. Scanlon,<sup>26,46</sup> Peter Skabara,<sup>26</sup> Franky So.<sup>47,48</sup> Henry J. Snaith,<sup>5</sup> Jarla Tiesbrummel,<sup>5</sup> Alessandro Troisi,<sup>49</sup> Craig Underwood,<sup>50</sup> Karsten Walzer,<sup>51</sup> Trystan Watson,<sup>22</sup> J. Michael Walls,<sup>52</sup> Aron Walsh,<sup>53</sup> Lucy D. Whalley,<sup>54</sup>



Samuel D. Stranks<sup>7,\*</sup> and Robert L. Z. Hoye<sup>8,53,\*</sup>

