

Innovation in Energy Storage A materials chemist's perspective

Dr Robert House RAEng Research Fellow Department of Materials

Oxford Energy Day 28th Sept 2023

What's driving energy storage innovation?

Global Li-ion cell demand (GWh) **Consumer electronics** ~4,700 More compact, longer lasting Consumer electronics ~6x **Stationary storage** Stationary storage Low cost, super reliable Mobility ~1.700 ~700 **Mobility** 2022 2025 2030 Low cost, higher energy McKinsey & Company Battery 2030: Resilient, sustainable, density, long lifetime and circular (Jan 2023)

Key automotive drivers of innovation

Cathode is a key limitation

Breakdown of cell costs

• Lower the **cost** of the cathode material (\downarrow Ni and \downarrow Co) • Increase the voltage and capacity of the cathode

Bloomberg NEF 2021

Operando mass spectrometry

Surface oxygen-loss only accounts for 25% of the capacity What is the bulk mechanism of oxygen redox?

Cathode Particle Surface

Resonant Inelastic X-ray Scattering (RIXS)

Probing the O valence states with RIXS at the O K-edge

House R.A. et al. *Nature Energy* **5**, 777–785 (2020)

Innovation in Li-ion cathodes Neutron Total Scattering (PDF) ¹⁷0 MAS NMR

House R.A. et al. *Energy Environ. Sci.*, **15**, 376-383 (2022)

House R.A. et al. Nature Energy 5, 777–785 (2020)

Li[Li_{0.2}Ni_{0.13}Co_{0.13}Mn_{0.54}]O₂

Cathode Particle Surface

Cathode Particle Bulk

Lithium isn't perfect

Global mineral reserves of lithium

Lithium carbonate global demand vs supply (kilotonnes)

US Geological Survey 2022

Majority of lithium located in 4 countries

McKinsey & Company Battery 2030: Resilient, sustainable, and circular (Jan 2023)

Lithium could be in short supply

Enter... sodium-ion batteries Naturally occurring soda ash (rocks and brines) Sodium carbonate — Na-ion batteries Limestone + salt (solvay process) 100,0000 -Li₂CO₃ 90,000-80,000 Electron — Co Discharge Battery charger 70,000 ☆— Ni operating device 60,000 50,000 US\$/Ton 40,000 30,000 20,000 10,000 Electrolyte Positive electrode Negative electrode Drop-in replacement for Li-ion and Pb-acid 01-06-17 01-06-21 01-06-22 01-06-18 01-06-19 01-06-20 Date (DD-MM-YY) Same manufacturing methods as Li-ion Rudola et al. Nature Energy 8, 215–218 (2023) Data taken from tradingeconomics.com

Na-ion batteries

The good...

	Li+	Na⁺
Cell cost (\$/kWh)	150	50
Abundance (ppm)	20	23,000
Safety risk	High	low

I he bad		
	Li+	Na⁺
Ionic radius (Å)	0.76	1.02
molar mass (g mol ⁻¹)	7	23
Reduction potential (V)	-3.05	-2.71

Na-ion battery cathodes

Prussian Blue/White analogues

High power Very low cost Very good lifetime

Layered oxides

Polyanion

Li_{1.2}Ni_{0.13}Co_{0.13}Mn_{0.54}O₂

 $Na_{0.6}Li_{0.2}Mn_{0.6}O_2$

House et al. Nature 577, 502-508 (2020)

XAS **RIXS** e⁻ holes Negligible O₂ on O²⁻ charged pristine 10 8 0 526 528 6 2 530 532 534 536 Energy Loss (eV) Excitation Energy (eV) O₂ formation suppressed Stable electron holes on O²⁻

House et al. Nature Energy 8, 351–360 (2023)

¹⁷O NMR

Na-ion for electric vehicles?

- Low cost < £10k
- 150-250 mile range
- 15-20 min fast charging
- Safer shipping at 0 V
- Earth-abundant raw materials

30kWh Na-ion battery 190-mile range RMB 78,000 (£8,800)

25kWh Na-ion battery 155-mile range RMB 46,900 – RMB 76,400 (£5,300 - £8,600)

Closing thoughts

- Battery energy storage critical to vehicle electrification (& potentially grid and aviation too)
- Li-ion \rightarrow lower cost, higher energy density
 - Cathode material a significant expense and performance limit
 - Lithium-rich cathodes & disordered rocksalts
 - Harness oxygen redox chemistry by suppressing O₂
- Na-ion is here to stay
 - Low-mid range commuter EVs
 - Materials innovation + economic headwinds will determine extent of market penetration

