Disruptive Strategies for Sourcing Energy Raw Materials

Yasur volcano (Vanuatu) – 2016

From Volcanoes to Green Mining

Jon Blundy

Department of Earth Sciences, University of Oxford

Critical metals -

increased demand and security of supply

World Bank (2DS)

The challenge

Netherlands Net Zero strategy

Magmatic systems and the energy transition

Volcanic fluids and metals

Hogg & Blundy, 2022

- Volcanic gases carry a diverse portfolio of metals and metalloids
- Approximately **2,000** degassing volcanoes worldwide
- Much more metal is dissolved in trapped, condensed liquids underground

Magmatic brines – metal-rich hypersaline liquids

CTR plant, Salton Sea (USA) \$520M 50 MW, 25 tonnes LiOH (by 2025)

Fluid inclusions

- Brine chemistry varies with magma type and tectonic setting
- Magmatic brines 'bleed' periodically into overlying geothermal systems
- Dilution by reservoir fluids
- Enrichment through fluid-rock reactions

Sub-volcanic brine lenses – formed by low-pressure phase separation

Afanasyev et al (018)

0.064

t=250 kyr

0.085

t=20 kyr

bulk salinity

0.043

Volcano geophysics – electrical conductivity

- ≤1 S/m conductors present at 2–4 km depth beneath **all** surveyed volcanoes
- Located below the convecting hydrothermal system and its clay cap
- Lenses of hot, electrically-conductive, metal-rich brines

Geothermal energy

Kakkonda power plant, Japan (50 MW) 89,000 yr-old granite heat source Potential supercritical geothermal site (100 MW)

Resistivity log₁₀ (ohm-m)

- Baseload renewable energy; high capital costs
- Major electricity source in Iceland, New Zealand, Philippines, Indonesia, Kenya...
- Does not require active or dormant volcanoes (Tuscany, Salton Sea, Kakkonda)
- **Supercritical** Geothermal System ≤10 times more joules per kg of fluid
- Can energy and metals be co-recovered economically?

Disruptive strategies for metals recovery

1. Mechanical extraction of mineral scales

2. Down-hole metals capture from fluids

3. Processing of spent geothermal fluid

4. Reservoir in-situ leaching using re-injected fluids

1. Mechanical extraction of scale

- Solute precipitation during fluid extraction to surface
- Mostly SiO₂ + sulfide/sulfates, carbonates
- Polymetallic 'high-grade ore' potential feedstock
- Well-bore scales conventionally dissolved away to maintain productivity
- WD1a brines (55 wt% NaCl_{eq}) recovered at 3700 m

(b)1999: Tetrahedrite (dendritic growth)

Yanagisawa et al, 2000; Kasai et al, 1998

2. Down-hole metals sequestration

- Supercritical fluid (SCF 8% NaCl_{eq}): 500 °C, 35 MPa, **200 t/hr** per well
- Value: current *refined* metal prices, \$0.10/kWh electricity
- Down-hole chemical modification of produced fluids
- Precipitation of metal-sequestering smart materials: silicates, zeolites, gibbsite

Engineering and Physical Sciences Research Council

3. Spent geothermal fluid processing

- Ohaaki-Broadlands 100 MW geothermal plant, New Zealand
- World-first, commercial plant processes 6,300 tonnes of geothermal fluid per day
- 650 ppm silica dissolved in spent fluids >90 °C, delivered via side-spur to injection well
- Recovers up to 330 tonnes per month of 4-14 nm colloidal silica particles
- Applications: construction, coatings and adhesives, precision casting, pulp and paper...
- Prelude to lithium, boron and antimony recovery

4. Reservoir in situ leaching

Volcanic tuffs

	Ethiopia	Altiplano	NZ
SiO ₂	72%	78%	76%
Li	31	840	24
В	-	113	20
Rb	156	596	110
Cs	1.5	580	3.6
U	8	17	2
Ва	397	264	875
Sn	13	46	2
Zn	475	70	39
Zr	1655	67	172
Hf	42	2	3
Nb	264	20	9
Та	16	7	2
Ce	475	30	55
Pr	52	-	5.3
Nd	215	14	19
Tb	6.5	0.3	0.7
Dy	38	2	4
Y	190	9	26

- Three main acid tuff varieties with variable metals endowment different tectonic settings
- Metals dissolved in volcanic glass; *in situ* leaching by hot (acid) fluids in the reservoir
- Inhibition of sulfide, phosphate etc precipitation by dosing re-injected fluids
- Potential new source of rare earths

Innovate UK

10¹⁰ Global Cumulative Volcanic Metal Flux, (kg/day) 10 Fe 10 Cd∮ Co_ 10 10 10⁵ Au 10 10[~] 10[~] 10¹⁰ 10[°] 10[°] 10[°] 10 10 10 Global Mined Metal Production, (kg/day)

Magmatic Metals

Geofluids Resource Landscape

Oxford Martin Programme on Rethinking Natural Resources

