Hydrogen and carriers- a (bio)catalysis perspective

Energy and Net Zero in the UK

Prof. Kylie A. Vincent Department of Chemistry

Hydrogen – a perspective from biology

Hydrogen energy circuits in cells

Green algae

Tóth and Yacoby, Trends in Biotechnol., 2019, 371159

Hydrogen energy circuits in cells

Cell of Cupriavidus necator (Ralstonia eutropha) Diagram courtesy of Oliver Lenz, TU Berlin

Energy system built around light hydrogen carriers

Adapted from: Energy Fuels 2019, 33, 4, 2778

Energy system built around light hydrogen carriers: research clustering in Oxford Chemistry and beyond

L Steier, I McCulloch, SCE Tsang...

Energy system built around light hydrogen carriers: research clustering in Oxford Chemistry and beyond

Energy systems built around light hydrogen carriers -contributions from Oxford Chemistry

Ammonia

$N_2 \rightarrow NH_3$	-Catalyst and implementation research in Oxford, inc SCE Tsang, W David
	→ Need for more agile alternatives to Haber-Bosch, particularly electrocatalytic NH ₃ synthesis, as well as ammonia decomposition catalysts
Boron-based carriers: ammonia borane etc	S Aldridge (Chemistry)
Lightweight metal hydrides	W David, recently PP Edwards

Liquid hydrocarbon stores

eg

→ Catalysis still heavily reliant on precious (platinum group) metals

STEC Ammonia reactor at PCaH

A personal perspective: H₂ in cleaner biocatalytic chemical manufacturing

Hydrogenases as electrocatalysts

Armstrong and coworkers, J. Biol. Chem. 2010, 285, 3928 (Oxford Chemistry)

Hydrogenations: 10-20% of steps in chemical manufacturing, often high temp, pressure

Hydrogenations: 10-20% of steps in chemical manufacturing

Hydrogenations: 10-20% of steps in chemical manufacturing

Biocatalytic hydrogenations

Heterogeneous biocatalytic hydrogenations

Enzyme lifetime and NAD⁺ total turnover are already competitive with existing biotech applications of enzymes.

Reeve et al., ChemCatChem, 2015, 7, 3480-3487

H₂-driven recycling of other cofactors?

(H₂ storage nature's way?)

S. Joseph Srinivasan Angew. Chemie Int. Ed., 2021, 60, 13824

H₂-driven recycling of other cofactors?

Heterogeneous biocatalytic hydrogenations: cleaning up chemical manufacturing

Conversions above 90% (often >98%), high ee, pure product

Nature's catalysts: the hydrogenases

2H⁺

Hydrophobic gas channels, and pathways for H₂O and H⁺ entry/exit

5 nm

electrons

Catalysis at the NiFe active site rivals rates at a platinum active site

Fast electron transfer via a relay chain of iron sulfur clusters

Η,

Bridgehead amine group poised to accept / donate protons

Attached FeS cluster poised to accept / donate electrons

Inspiration from biology

Artero and coworkers, 2017 56, 1845-1849

What more can we learn from nature?

Nitrogenase: biological N₂ fixation

Essentially an *electrocatalytic* mechanism for biological N₂ fixation

Accumulation of metal-bound hydrides important in storing the electrons needed for $6e^{-}$ reduction of N₂.

Lessons for electrochemical Haber Bosch?

 $\rm N_2 + 10\,H^{\,+} + 8e^- + 16\,ATP \rightarrow 2NH_4^{\,+} + H_2 + 16ADP + 16P_i$