India's Energy Challenge in an Unequal and Warming World

Tejal Kanitkar

National Institute of Advanced Studies, Bengaluru, India

IPCC, AR6, WG-I

۰

<u>Historical</u> <u>Cumulative</u> <u>Emissions</u> ~1.07 deg. Warming

Past Cumulative Emissions (1850-2019)

Remaining Carbon Budget to Limit Temperature Rise below a Specific Target (2020-Global Net Zero)

Historical Cumulative Emissions → 1.07 deg. Warming

Historical Cumulative Emissions → 1.07 deg. Warming

The Hot Air of Net0 \rightarrow 1.5 deg --- No longer alive

Very little carbon space left for the future

- Historical Emissions by Developed countries
- 71% of cumulative emissions up to 1990
- 61% of cumulative emissions up to 2019
- India's contribution \rightarrow ~5%

Carbon Debt/Credit for Some Countries

Carbon Debt/Credit = Fair Share of Past Cumulative Emissions - Actual Past Cumulative Emissions

	Carbon Debt/Credit (1850-2019) [GtCO2eq]	USD @ \$50/tCO2eq]
USA	-445	-22
EU(27)	-216	-11
Russian Federation	-125	-6
UK	-76	-4
Canada	-33	-2
Australia	-23	-1
Brazil	23	1
China	122	6
India	338	17

Carbon Dobt/Cradit (1950-2010) [Trillion

- For an 83% probability of limiting temperature rise to below 2 deg C.
- And a 17% probability of limiting temperature rise to below 1.5 deg. C
- Remaining Carbon Budget of ~900 GtCO2

- For an 83% probability of limiting temperature rise to below 2 deg C.
- And a 17% probability of limiting temperature rise to below 1.5 deg. C
- Remaining Carbon Budget of ~900 GtCO2

With Current Pledges even 2 deg. C is barely "alive"		Year to Reach Net-Zero Emissions – Full Historical Responsibility	Year to Reach Net-Zero Emissions if Grandfathering
	USA		2031
	EU (27) + UK		2046
	Australia		2030
	Canada	2020. Negative emissions	2031
	Japan	needed from 2020 onwards	2044
	Other Annex-I Countries		2046
	Annex-I as a Group		2039

- For an 83% probability of limiting temperature rise to below 2 deg C.
- And a 17% probability of limiting temperature rise to below 1.5 deg. C
- Remaining Carbon Budget of ~900 GtCO2

With Current Pledges even 2 deg. C is barely "alive"		Year to Reach Net- Zero Emissions – Full Historical Responsibility	Year to Reach Net- Zero Emissions if Grandfathering	Year to Reach Net- Zero if Fair Share Weighted with Historical Responsibility
unve	USA		2031	2023
	EU (27) + UK		2046	2033
	Australia		2030	2025
	Canada	2020. Negative	2031	2026
	Japan	from 2020 onwards	2044	2033
	Other Annex-I Countries		2046	2035
	Annex-I as a Group		2039	2029

- For an 83% probability of limiting temperature rise to below 2 deg C.
- And a 17% probability of limiting temperature rise to below 1.5 deg. C
- Remaining Carbon Budget of ~900 GtCO2

With Current Pledges even 2 deg. C is barely "alive"		Year to Reach Net- Zero Emissions – Full Historical Responsibility	Year to Reach Net-Zero Emissions if Grandfathering	Year to Reach Net-Zero if Fair Share Weighted with Historical Responsibility	Proposed year of Net Zero
	USA		2031	2023	2050
	EU (27) + UK		2046	2033	2050 (some 2045)
	Australia		2030	2025	None
	Canada	2020. Negative	2031	2026	2050
	Japan	from 2020 opwards	2044	2033	2050
	Other Annex-I Countries	from 2020 onwards	2046	2035	~2050
	Annex-I as a Group		2039	2029	2050

Implications for India

~18% of the global population

~4.5% of global emissions so far (1850-2019)

Yet....

- Pressure to do more
- Declare net-zero..... by....?
- Enhance NDCs.....

What are the challenges?

Per Capita GDP (2016 - \$ PPP)

Per Capita GDP

	Life Expectancy (years)OWID	Mean Years of Schooling (Years)OWID	IMR(no.of deaths per 1000 live births)WB
France	82	12	4
Germany	81	14	3
United Kingdom	81	13	4
United States	79	13	6
China	76	8	9
Brazil	75	8	15
Russia	72	12	7
India	69	6	33

Developmental Challenge is significant.

What kind of energy requirements for the future does this imply?

Per Capita Energy, Electricity, and Fossil Fuel Consumption

	Per Capita Energy Use (KWh)	Per Capita Electricity Consumption (kWh)	Per Capita Fossil Fuel Consumption (kWh)
United States	79,131	12,679	66,340
Russia	54,991	7,106	48,373
Germany	46,028	7,845	37,255
France	41,931	8,641	21,956
United Kingdom	33,577	5,050	27,530
China	24,938	4,259	21,833
Brazil	16,059	2,755	9,206
India	6,306	924	5,837

	Number of Countries	Proportion of Global Population	Per Capita GDP (\$- PPP)	HDI	Per Capita Energy Use (GJ)
High Development	41	18%	43,272	0.900	241
UK		1%	39,309	0.924	123
USA		4%	53,399	0.920	338

	Number of Countries	Proportion of Global Population	Per Capita GDP (\$- PPP)	HDI	Per Capita Energy Use (GJ)
High Development	41	18%	43,272	0.900	241
UK		1%	39,309	0.924	123
USA		4%	53,399	0.920	338
Medium Development	52	45%	15,039	0.750	88
China		18%	14,401	0.746	104
Mexico		2%	17,207	0.751	74

	Number of Countries	Proportion of Global Population	Per Capita GDP (\$- PPP)	HDI	Per Capita Energy Use (GJ)
High Development	41	18%	43,272	0.900	241
UK		1%	39,309	0.924	123
USA		4%	53,399	0.920	338
Medium Development	52	45%	15,039	0.750	88
China		18%	14,401	0.746	104
Mexico		2%	17,207	0.751	74
Low Development	41	37%	3,488	0.550	21
India		18%	6,096	0.630	23
Kenya		1%	2,927	0.591	11

Energy – Some Basic Scenarios

- Current per capita energy use = 23 GJ
- Aspirational goals for 2035 and 2050 (not just eradication of poverty but well-being and decent work for all)

2016	2035	2050
23	70	120
23	85	240
23	100	320

- Even if we take the lower end....
 - 23 \rightarrow 70 \rightarrow 120

All Values in GtCO2	Considering full historical responsibility	Considering only what is remaining for the future (Grandfathering)	Future availability weighted with historical responsibility
India's Fair Share of the Remaining Global Carbon Budget (83% probability of 2 deg. C, 33% probability of 1.5 deg. C	503	166	241
India's Emissions for an Aspiration energy target of 120 GJ per person by 2050		220-236	

The challenge is significant....

Ambitious targets for RE currently

- 175 GW from RE (without large hydro) by 2022
 - 100 GW from solar
 - 60 GW from wind

450 GW by 2030 – domestic target for now

- COVID-19 impact
- Storage? Energy security?

Fossil-fuel vs. RE share

RE Generation

As of 31 May 2021

Total RE capacity - ~95 GW

- Solar \rightarrow 40.5
- Wind \rightarrow 39.4
- Biomass \rightarrow 10.3
- SHP \rightarrow 4.8

- Developed countries transition from coal to gas
- India installed more RE in 2018 than Germany

2018 Capacity [GW]	Total Installed Capacity	Solar PV	Wind
India	364	32	35
Germany	198	45	59

New RE Addition in 2018:

India = 12 GW (10 Solar and 2 Wind)

Germany = 6 GW (3 Solar and 3 Wind)

Not without Cost

Southern India (50% of	Avoided Cost of	Total Financial	
RE Installed capacity)	Carbon (\$/ton)	Burden (Million USD)	
Karnataka	1.91	227	
Telangana	4.51	200	
Tamil Nadu	1.92	286	
Andhra Pradesh	2.92	350	

Over and above a carbon tax (coal cess) of ~ \$4.5/tCO2

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95

Additional burden of grid integration of VRE

- \rightarrow ¢ 1.11/kWh: balancing cost
- \rightarrow ¢1.5/kWh: stranded capacity cost
- \rightarrow Totaling: 3.04/ kWh

High cost of energy

	Average Per Capita GNI (\$/person/year)	Residential Electricity Charge (¢/kWh)	Industrial (¢/kWh)	Commercial (¢/kWh)
California (USA)	35046	19	12	15
Texas (USA)	29525	12	5	8
Karnataka(India)	2500	9 - 10	7 - 10	6 - 15
Tamil Nadu (India)	2800	6.5 - 9	6 - 9	6 - 11

Will new (cheaper) RE reduce costs?

Cost of RE

- RE costs have reduced... but
 - System costs, storage costs, required system inertia
 - PH storage vs. BESS, coal for balancing
 - Manufacturing capacity for RE, storage?
 - High import dependence (In 2019-20, India imported 796 million solar cells, panels, and modules, worth Rs. 11,899 crore in 2019-20, 78% from China)
 - Constraints on gas, hydro, nuclear
 - Gas unavailable, hydro is multipurpose
 - Nuclear -- financial and other constraints

Near term future of the power sector

- Clean coal
 - Progressive retirement of older plants: based on performance parameters (including environmental)
 - ≻New investment focus on clean coal (SC, USC, AUSC)
 - ➢ Focus on air pollution (more than mitigation)
- RE capacity phased increase based on capacity to absorb while enhancing manufacturing capabilities
- Storage and balancing → domestically available resources (hydro can play a key role)

Why Equity is Important for India...and other developing countries As we head to COP 26

The challenge is huge (cannot be emphasized enough)

Pressurizing India to do more – inequitable and unjust

India urgently needs to focus on development -- Important for adaptation (>1.5 deg. C world)

Not enough to say more needed by low-income countries conditional on finance (What is the record on this? Will it lead to green debt?)

Differentiation still relevant – less developed countries some flexibility (with adequate action). Track record of developed country inaction on multiple fronts

Measure action using equity as the basis. Only possible way forward that does not put the burden of saving the world disproportionately on the backs of the poor.