Pathways to a zero carbon Oxfordshire

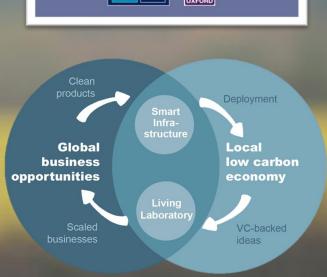
Bioregional

2021

eci university of OXFORD

Sam Hampton Oxford Energy Network Seminar 23rd November 2021

Outline


- 1. Background context
- 2. Scope and methods
- 3. Scenarios
- 4. Sectoral conclusions
- 5. Myth Busting
- 6. Impact and next steps

Where did we start? The "2014 Report"

- Low carbon a major sector of the Oxon economy, £1.15 bn/year and 8,800 jobs.
- £100m/year investment needed to 2030 in clean energy, and in decarbonising buildings and transport.
- Potential improvements in quality of life.
- Synergies between local action and global business opportunities.

Oxfordshire's Low Carbon Economy

What's changed since 2014?

- The scale of international and national ambition, in particular net zero by 2050
- From low carbon to zero carbon
- Public opinion on climate change
- COP26
- Local authorities' climate emergency declarations and net-zero targets
- 50% reduction by 2030

What does this ambition mean in practice?

- Large increases in local renewable electricity generation
- Major renovation of most of our existing buildings
- Increases in the use of public transport, cycling and walking
- Replacing all fossil-fuel boilers
- Replacing all petrol and diesel vehicles
- Difficult decisions on land use priorities between development, food, energy and nature
- Social and technical innovation to make all this happen

Author team

Project Director: Nick Eyre Project Manager and lead author: Sam Hampton Innovation: Lewis Knight, Hannah Scott Transport: Hannah Budnitz Buildings: Gavin Killip Energy: Scot Wheeler Land use: Alison Smith

Funders and Steering Group Members:

Scottish & Southern Electricity Networks

Scope and methods

- Territorial emissions Scope 1 and 2
- National Grid Future Energy Scenarios
- Focus on net zero by 2050
- Growth assumptions

Pathways to Zero Carbon

Steady Progression

Societal Transformation

Technological Transformation Oxfordshire Leading the Way

Steady Progression

- Extrapolates from existing trends and alreadyannounced policies.
- Achieves 41% emissions reduction by 2030.
 Does not reach zero carbon by 2050.
- Low levels of energy efficiency and renewable heating.
- Gas still used for heating well into 2040s.
- Continued reliance on private transport. EV transition is slower, but does reach ~100%.
- Carbon stored in land falls slightly, and food production falls to 40% of our requirements.

Societal Transformation

- Driven by individual behaviour change and environmentally-conscious consumer choices.
- Strong take up of domestic energy efficiency measures, heat pumps, active travel, electric vehicles.
- Electricity demand increases dramatically, but with high levels of flexibility (40% work from home in 2050). Comparatively greater rooftop solar.
- Widespread adoption of low-meat diets, and doubling of woodland.
- Net sequestration reaches 19% of emissions, and local food production meets 95% of need.

Technological Transformation

- Techno-optimistic.
- Fewer homes renovated. Hydrogen boilers used as 'drop in' replacements.
- Preference for ground-mounted solar.
- Less flexibility, more grid investment.
- Reliance on private Evs.
- Intensified agriculture and high production of bioenergy.
- Food production falls to 39% of need.

Oxfordshire Leading the Way

- Strong public and local policy support. Highly ambitious.
- High levels of:
 - Retrofit
 - Heat pumps
 - User flexibility
 - Bioenergy for CCS
 - Active travel, shared mobility and LTNs
- Solar capacity increases x10 = 1% of land.
 Renewable generation meets 52% of demand.
- Fall in overall travel demand including private vehicle numbers.
- Food production falls to 55% of needs.

Conclusions - Innovation

- A local strength
- Opportunity for clean economic growth and job creation
- Transition must be inclusive
- Imperative that COVID-19 recovery is linked with climate action
- Significant investment needed

Conclusions - Transport

Emissions are stubbornly high

- Avoid reducing demand
- Shift active travel, public transport, shared mobility
- Improve cleaner transport

Conclusions - Buildings and Heat

- Slow progress
- Major programme of retrofit
- Gas boiler phase out
- Scaling heat pump installations
- Strict requirements for new homes and developments

Conclusions - Energy

- Extensive solar deployment
- Increases in electricity demand require grid reinforcement and flexibility
- Data at the 'grid edge'

Conclusions - Land

- Pressures:
 - Development
 - Bioenergy production
 - Electricity generation
 - Restoration of ecosystems and natural capital
- Implications:
 - Innovation in food production
 - Dietary changes

Myth Busting

"We should plant trees to offset our emissions"

"We need a more skilled & qualified workforce"

"Electric vehicles are coming to save us"

"Net-zero can be achieved by 2030" "Fossil fuels are needed for economic growth" "It all comes down to individual behaviours"

Reflections

- High ambition from local stakeholders
- Dependent on national policy in many areas
- Change is urgent, and should not be underestimated

Impact and next steps

- Warmly welcomed by local authorities and 'FOP'
- Delivery 'roadmap' being developed
- Criticised for not going further on:
 - Curtailing development
 - Cars and congestion
 - Scope 3 inc embodied emissions
 - Food

Thank you

🕑 @samhampton