

The Limits of Energy Sufficiency How rebounds and spill-overs can erode energy savings

Steve Sorrell, Birgitta Gatersleben, Angela Druckman

Oxford Energy Colloquia, April 28th 2020

- Energy sufficiency
- Rebound effects
- Negative spill-overs
- Implications

Energy Research & Social Science 64 (2020) 101439

Review

The limits of energy sufficiency: A review of the evidence for rebound effects and negative spillovers from behavioural change

Steve Sorrell^{a,*}, Birgitta Gatersleben^b, Angela Druckman^c

^a Sussex Energy Group, Science Policy Research Unit, University of Sussex, United Kingdom ^b School of Psychology, University of Surrey, United Kingdom ^c Centre for Environment and Sustainability, University of Surrey, United Kingdom

Energy sufficiency

ECEEE Energy Sufficiency Project

Efficiency or economy? We can have both... or neither

- Adrian Joyce, EuroACE

Home About - Themes Library & resources - News - Events -

Progress within boundaries

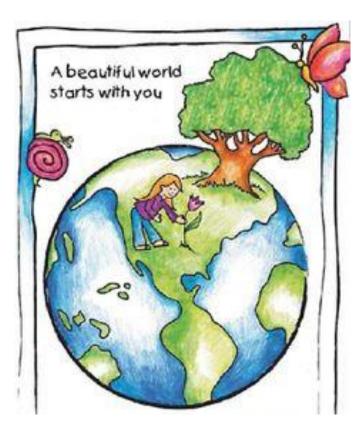
Energy sufficiency goes beyond energy efficiency: it's about having enough but not using too much. It's about doing things differently; about living well, within the limits. Read more about our project and join the conversation.

Staying in a green and safe place

Pictures representing new concepts can help us develop a better understanding of them. As part of this project, researchers at Oxford University have developed the 'energy sufficiency doughnut' to help us better understand the concept.

Energy sufficiency as a goal – <u>levels</u> of energy service consumption (e.g. <u>Darby & Fawcett, 2018</u>)

- "... energy sufficiency is a state in which people's basic needs for energy services are met equitably and ecological limits are respected..."
- Deep roots, and conceptual, ethical and practical difficulties in operationalising ecological limits distinguishing needs from wants
- Energy sufficiency as an action <u>reductions</u> in energy service consumption (e.g. <u>Thomas et al, 2015</u>)
- "... energy sufficiency refers to changes in individual behaviours that lead to lower demand for energy services ..."
- Overlaps with 'pro-environmental behaviour' (PEB), 'behavioural change', 'curtailment' and 'energy conservation'


Energy sufficiency actions

Voluntary actions to reduce the consumption of individual energy services

- What is an energy service?
- Direct versus indirect
- Energy versus environmental
- Motivations versus outcomes
- Individual versus social

Empirical studies use different definitions, measures and actions

Comprehensive energy sufficiency -Downshifting

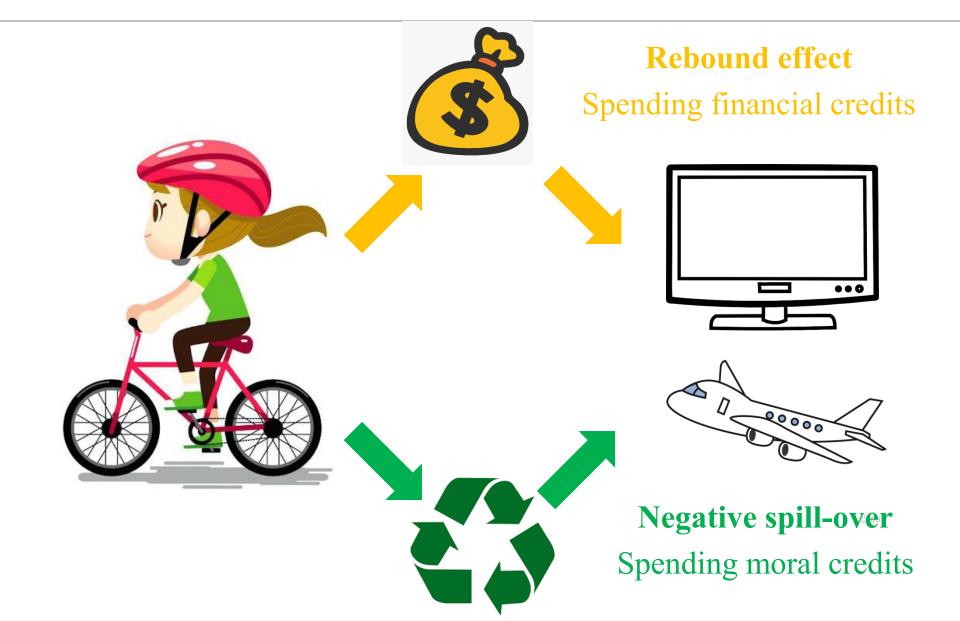
Voluntary reductions in working time, income and aggregate consumption

More time, fewer goods, better quality of life

- *Economic challenges*: increasing inequality, rising housing costs, growing debt, falling real wages, unavoidable financial commitments, product obsolescence, etc.
- **Psychological challenges**: status seeking through positional goods, adaptation of aspirations to higher incomes, desire for novelty, social pressure etc.

Voluntary downshifting is likely to be confined to wealthy and highly motivated individuals

MADE EASY


Downshifting

How to plan for your planet-friendly future Marian Van Eyk McCain

Rebound effects and negative spill-overs

Rebounds and spill-overs can either offset or enhance energy/emission savings

	Rebounds (financial resources)	Spill-overs (moral resources)
Offsets the	Positive rebound	Negative spill-over
initial energy savings	(e.g. if cycling is less expensive than car travel, more money is available to spend on a 70" smart TV)	(e.g. cycling to work may licence a decision to take an overseas holiday)
Reinforces the initial energy	Negative rebound	Positive spill-over (e.g. cycling to work may reinforce
savings	expensive than car travel, less money is available to spend on an on a 70" smart TV)	a commitment to not take an overseas holidays)

Practically interdependent and psychologically interlinked

Evidence on rebounds and spill-overs

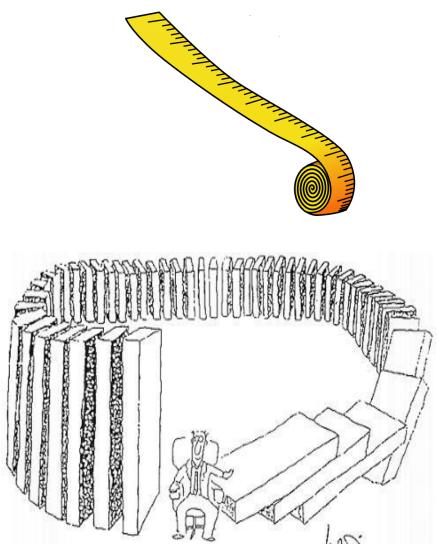
Economic and behavioural responses to energy sufficiency actions that reduce their environmental benefits

Rebound effects - Economics

- Environmental impacts of actions
- Psychological motivations neglected
- Econometric analysis and modelling

Spill-overs - Psychology

- Psychological explanations for actions
- Environmental impacts neglected
- Experiments and surveys


Rebound effects

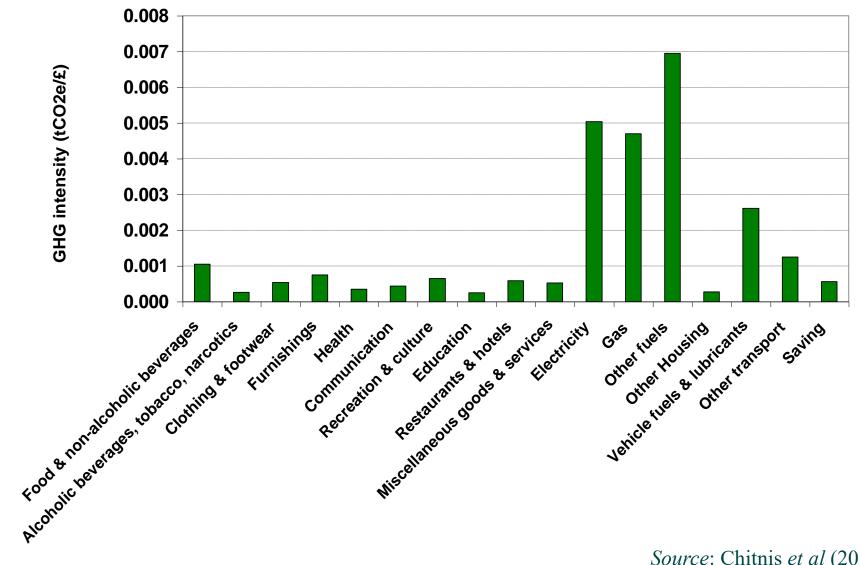
Estimating the environmental impact of rebound effects

- Indirect rebound effect:
 combine econometric analysis
 of consumer expenditure data
 with multiregional,
 environmentally-extended
 input-output models
- Energy market effect: estimate demand and supply elasticities
- Macroeconomic effects:
 employ CGE models

Determinants of the size of indirect rebound effects

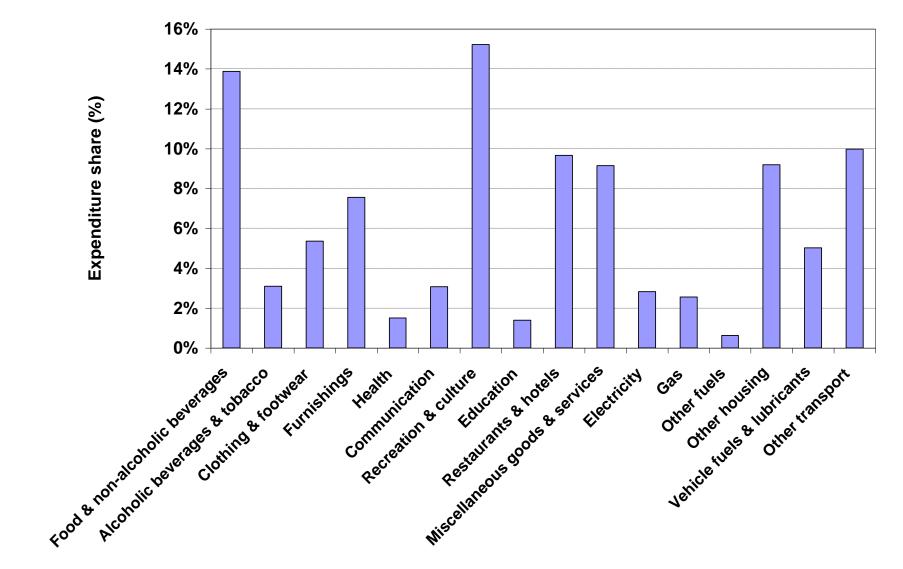
- The size of the indirect rebound effect will depend on the distribution of re-spending between different goods and services (£) and the energy/emission intensity of expenditure on those goods and services (e.g. tCO₂/£) relative to expenditure on the energy service itself
- The distribution of re-spending can be estimated from econometric analysis of government survey data on the expenditure patterns of different income groups
- Survey data is limited in accuracy, uses aggregate categories and hides the variations in spending between different households

The larger the economic benefit from the sufficiency action, the **larger** the rebound


Expenditure categories

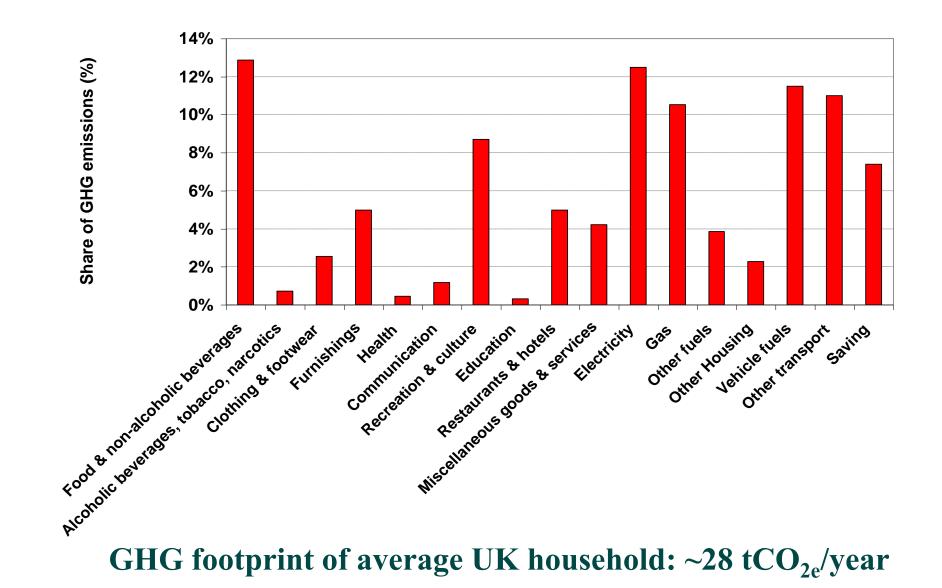
- 1. Food and non-alcoholic beverages
- 2. Alcoholic beverages, tobacco, narcotics
- 3. Clothing & footwear
- 4. Electricity
- 5. Gas
- 6. Other fuels
- 7. Other housing
- 8. Furnishings, household equipment & routine household maintenance
- 9. Health
- 10. Vehicle fuels and lubricants
- 11. Other transport
- 12. Communication
- 13. Recreation and culture
- 14. Education
- 15. Restaurants and hotels
- 16. Miscellaneous goods and services
- 17. Savings

Source: Chitnis et al (2014)

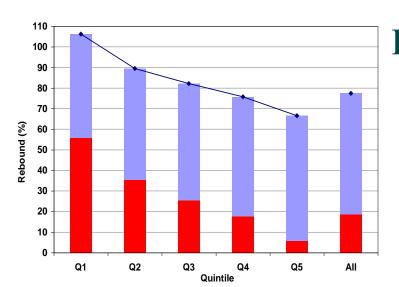

GHG intensity of expenditure (tCO_{2a}/E)

Source: Chitnis *et al* (2014)

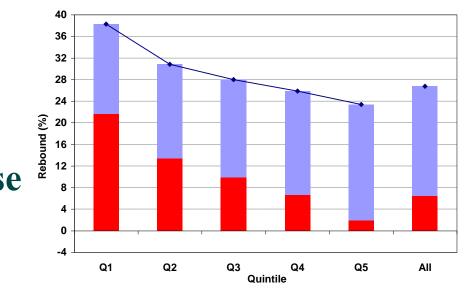
University of Sussex


Expenditure shares (%)

Source: Chitnis et al (2014)



GHG emission shares (%)


University of Sussex

Indirect rebound effects from reducing food waste and car use in the UK

Reducing food waste

Mean = 77%

University of Sussex

Reducing car use Mean = 28%

Source: Chitnis et al (2014)

Estimates of sufficiency rebounds – indirect $\bigcup_{\text{University of Sussex}}$ effects

Study	Region	No. of	Areas targeted by	Measure of	Estimated rebound effect	
		expenditure	sufficiency	environmental	(%)	
		categories	actions	impact		
Alfreddson [52]	Sweden	300	Food, travel,	Energy use	Food: 300% (200%)	
			housing	(Carbon	Travel: 30% (10%)	
				emissions)	Housing: 14% (20%)	
					Total: 33% (20%)	
Lenzen and Dey	Australia	150	Food	Energy use	Energy: 112-123%	
[49]				GHG emissions	GHGs: 45-50%	
Grabs [<u>53]</u>	Sweden	117	Food	Energy use	Energy: 95-104%	
				GHG emissions	GHGs: 49-56%	
Murray [<u>54]</u>	Australia	36	Transport,	GHG emissions	Transport: 15-17%	
			electricity		Electricity: 4.5-6.5%	
Druckman et al	UK	17	Heating, transport	GHG emissions	Heating: 7%	
[55]			food		Transport: 25%	
					Food: 51%	
Chitnis et al [46]	UK	20	Heating, transport,	GHG emissions	Heating: 12-17%	
			food		Transport: 25-40%	
					Food: 66-106%	
Bjelle et al [50]	Norway	200	Transport, utilities,	GHG emissions	Transport: 57-83%	
			food, waste, other		Shelter: 0%	
					Clothing: 61-89%	
					Food: 11-16%	
					Paper: 129-190%	
					Plastic: 65-05%	

Estimates of sufficiency rebounds – indirect $\bigcup_{\text{University of Sussex}}$ effects

Region	No. of expenditure categories	Areas targeted by sufficiency actions	Measure of environmental impact	Estimated rebound effect (%)
Sweden	300	Food, travel, housing	Energy use (Carbon emissions)	Food: 300% (200%) Travel: 30% (10%) Housing: 14% (20%)
				10 00 /0
				19-30 %
ıfficiend	cy actior	ns are fre	quently	large 15-17%
UK	17	Heating, transport food	GHG emissions	Heating: 7% Transport: 25% Food: 51%
UK	20	Heating, transport, food	GHG emissions	Heating: 12-17% Transport: 25-40% Food: 66-106%
Norway	200	Transport, utilities, food, waste, other	GHG emissions	Transport: 57-83% Shelter: 0% Clothing: 61-89% Food: 11-16% Paper: 129-190%
	Sweden Availab indi indi ifficiend UK UK	expenditure categoriesSweden300Available evide indirect reb indirect reb fficiency actionUK17UK20	expenditure categoriessufficiency actionsSweden300Food, travel, housingAvailable evidence sugg indirect rebound effeIndirect rebound effeIfficiency actions are freeUK17UK17UK20Norway200Transport, utilities,	expenditure categoriessufficiency actionsenvironmental impactSweden300Food, travel, housingEnergy use (Carbon emissions)Available evidence suggests that indirect rebound effects from fficiency actions are frequentlyUK17Heating, transport foodUK20Heating, transport, foodGHG emissionsNorway200Transport, utilities,GHG emissions

Summary - Rebound effects from sufficiency actions

- Limited evidence-base confined to indirect effects. Varying metrics, commodity disaggregation and econometric methods. Diverse results
- Rebound effects appear to be modest (5-15%) for measures affecting domestic energy use, larger (15-50%) for measures affecting vehicle fuel use and very large (50 to >100%) for measures affecting food consumption
- Estimates sensitive to metric used, level of disaggregation, emission intensity of electricity generation, commodity taxation and pattern of re-spending
- Rebounds are typically larger for low income groups since carbon-intensive 'necessities' (e.g. food, heating) form a larger proportion of total (re)spending
- From a static perspective, carbon pricing may increase rebounds and carbon caps may lead to backfire (rebound >100%)
- Macroeconomic effects will modify these results, but these have not been adequately studied

Negative spill-overs

Spill-overs

Extent to which engaging in one behaviour changes the probability of engaging in another

- Across behaviours or contexts
- **Negative spill-overs**: explanations include moral licensing
- **Positive spill-overs:** explanations include consistency and identity effects
- Sign and magnitude of spill-over depends upon drivers, difficulties and similarities of behaviours, and contexts

Positive or negative spill-over

Positive spill-over more likely when:

- Behaviour driven by environmental identity
- Initial behaviour is costly (reinforces identity)
- Subsequent behaviour is similar
- Feel need for consistency in behaviour
- Reinforcing social feedback

Negative spill-over more likely when:

- Behaviour driven by affect (e.g. guilt)
- Subsequent behaviour is costly
- Subsequent behaviour is different
- Feel less need for consistency in behaviour
- Little reinforcing social feedback

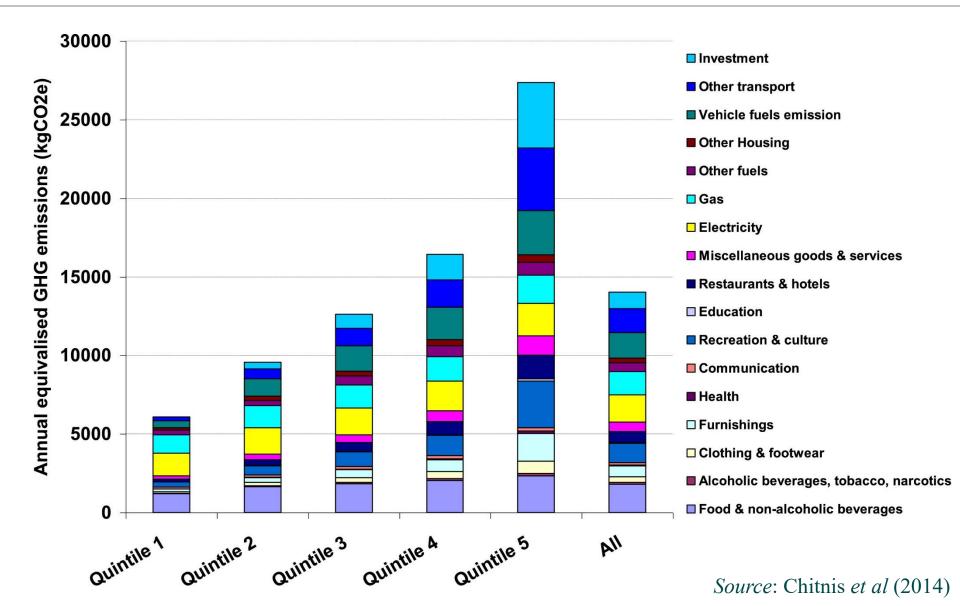
Larger cost savings lead to larger rebounds AND emphasising cost savings encourages negative spill-over

Experimental evidence of negative spillover - examples

- <u>Tiefenback et al (2013)</u>: interventions to encourage US households to use less water led to them to use more energy
- <u>McCoy and Lyons (2017)</u>: Irish households exposed to time-of-use pricing reduce energy use but adopt fewer energy efficiency measures
- <u>Klockner et al (2013)</u>: electric car owners in Norway drive more than conventional car owners and report less obligation to reduce car use
- Meijers et al (2015): Dutch citizens who donate to charity are less likely to adopt pro-environmental behaviours
- Jacobsen et al (2007): US households who joined a green power program increased their electricity consumption
- Harding and Rapson (2013): US households who joined a carbon offsetting scheme increased their electricity consumption

Survey and focus group evidence of negative spill-over - examples

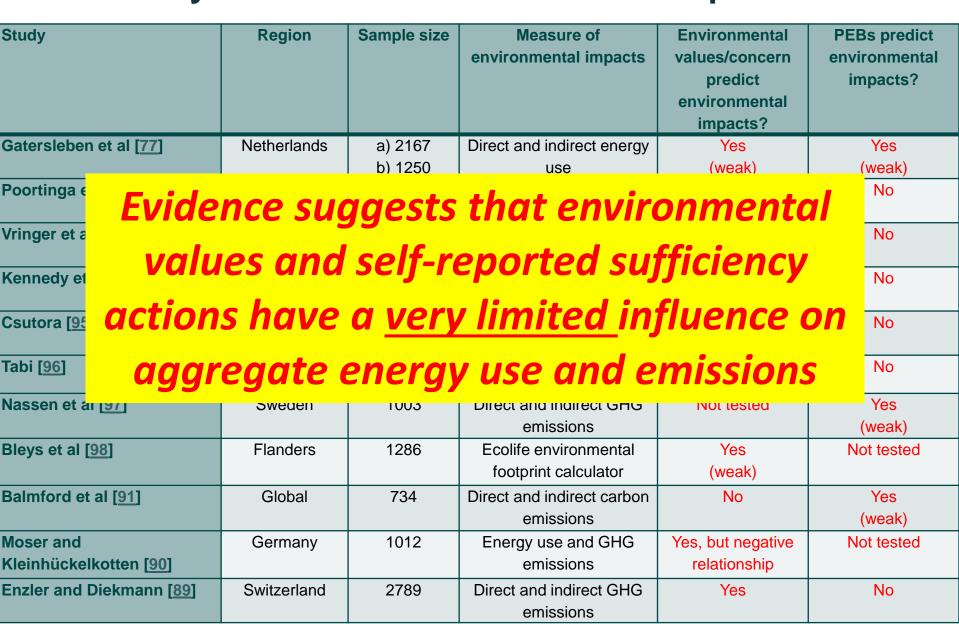
- <u>Miller et al (2007)</u>: focus group participants did not feel a need to be environmentally friendly on vacation if they engaged in actions at home
- Hope et al (2018): UK focus group participants highlighted their actions to reduce feelings of guilt for environmentally damaging behaviours.
- <u>Capstick et al (2019)</u>: moral licensing widely endorsed in 7-country household survey and predicted inconsistent behaviour in different domains
- Noblet and McCoy (2018): survey participants who report engaging in sufficiency actions are less likely to support sustainable energy policy (moderated by environmental identity)
- <u>Alcock et al (2017)</u>: environmental attitudes predict sufficiency actions within the home but not discretionary flying behaviour
- **Barr et al (2011):** survey respondents who report the most sufficiency actions at home also take more flights.



Estimating the environmental impact of negative spill-overs

- Most studies measure intents/behaviours rather than outcomes
- Small number of studies use cross-sectional household surveys to estimate correlations between environmental values, sufficiency actions and aggregate energy use/emissions
 - Multiple measures of values and actions typically rely upon selfreports and focus upon low-impact actions
 - Multiple measures of aggregate impacts typically partial coverage with limited accuracy
 - Multiple **explanations** of observed results typically not tested
- Household income is the biggest predictor of energy use and emissions (e.g. elasticity of 0.5 to 1.0)
- Geographical location is a weak predictor, within ambiguous results for age, gender, education and employment

Estimates of GHG emissions for different income groups in the UK



Correlations between environmental values, sufficiency actions and environmental impacts

Study	Region	Sample size	Measure of	Environmental	Sufficiency actions
	5		environmental impacts	values/concern	predict
				predict	environmental
				environmental	impacts?
				impacts?	
Gatersleben et al [77]	Netherlands	a) 2167	Direct and indirect energy	Yes	Yes
		b) 1250	use	(weak)	(weak)
Poortinga et al [<u>92</u>]	Netherlands	455	Direct and indirect energy	No	No
			use		
Vringer et al [<u>93]</u>	Netherlands	2304	Direct and indirect energy	No	No
			use		
Kennedy et al. [<u>94]</u>	Alberta, Canada	1203	Direct carbon emissions	Yes	No
				(weak)	
Csutora [<u>95]</u>	Hungary	1012	Direct and indirect carbon	Not tested	No
			emissions		
Tabi [<u>96]</u>	Hungary	1012	Direct carbon emissions	Not tested	No
Nassen et al [<u>97]</u>	Sweden	1003	Direct and indirect GHG	Not tested	Yes
			emissions		(weak)
Bleys et al [<u>98]</u>	Flanders	1286	Ecolife environmental	Yes	Not tested
			footprint calculator	(weak)	
Balmford et al [<u>91]</u>	Global	734	Direct and indirect carbon	No	Yes
			emissions		(weak)
Moser and	Germany	1012	Energy use and GHG	Yes, but negative	Not tested
Kleinhückelkotten [<u>90]</u>			emissions	relationship	
Enzler and Diekmann [89]	Switzerland	2789	Direct and indirect GHG	Yes	No
			emissions		

University of Sussex

Correlations between environmental values,

University of Sussex

Hypotheses

- **1.** Self-report bias: The respondents exaggerate their adoption of sufficiency actions
- **2.** *Poor targeting*: The respondents prioritise low-impact actions and neglect high-impact actions
- **3. Rebound effects**: The respondents re-spend the cost savings from their actions on other goods and services, thereby offsetting some or all of the environmental benefits
- **4. Negative spill-overs**: The respondents consider that their sufficiency actions provide them with a 'moral licence' to engage in other, more environmental damaging behaviours.

Suggests that households prioritise actions with limited environmental benefits, and/or a combination of rebound effects and negative spill-overs partly or wholly offset those benefits. *Also*, since energy use and emissions is strongly correlated with income, the modest impact of most sufficiency actions may easily be outweighed by small increases in income.

Summary and implications

Summary

- Sufficiency actions have **rebounds and spill-overs** which vary in sign and magnitude between different behaviours and contexts
- Growing understanding of the determinants of rebounds and spillovers, but limited evidence on aggregate impacts
- Impact of rebounds appears modest (5-15%) for measures affecting domestic energy use, larger (15-50%) for measures affecting vehicle fuel use and very large (50 to >100%) for measures affecting food
- Impact of spill-overs unclear, but environmental values and selfreported sufficiency actions appear to have have little influence on aggregate environmental impacts
- Rebounds unlikely to outweigh the climate benefits of sufficiency actions, but spill-overs may do in some instances
- To effectively reduce carbon footprints, individuals need to prioritise high-impact actions and strive for consistency

Implications

Research:

- surveys combining behavioural choices and aggregate impacts
- experiments to identify determinants of spill-overs to/from high and low impact behaviours in different contexts
- *mixed methods* to both quantify and explain rebounds/spillovers
- modelling to capture macroeconomic effects

Policy:

- Interventions should consider spill-overs e.g. highlighting costsavings may be counter-productive
- Impacts are not the only relevant metric awareness, engagement, support for collective action, etc.