Environmental Change Institute

Finding the balance New System Flexibility with Storage and Demand

Phil Grunewald

28 Nov 2017

Efficiency was for fossil systems what

Flexibility will be for future systems

Efficiency

Flexibility

Storage

Flexible Demand

e 4kWh

10kWh

2 conditions:

$\eta = \frac{Out}{In} \stackrel{\rm < valuable}{\scriptstyle < {\rm constrained}}$

100kWh

Space – maybe Cost - yes

UK productivity

$\eta = rac{Out}{In} \, \, { m GDP} \, { m (valuable)}$

Demand

$\eta = \frac{Out}{In} \begin{array}{c} \mathrm{Service} \\ \mathrm{Energy} \end{array}$

Demand

$\eta = rac{Out}{In}$ Service Energy

Very valuable

Not constrained

Demand

constrained

Efficiency

Flexibility

Storage

Flexible Demand

Synchronicity (seconds - minutes) Rhythm (hours – seasons) Change (decades)

Synchronicity (seconds - minutes) Rhythm (hours – seasons) Change (decades)

Everything changes

- Assume a costly counterfactual
- Re-optimise with storage and (free!) DSR
- Claim all savings are passed to consumers (p.4: "£40bn off their energy bills")
- Rely on "markets and competition"
 - "Expect consumers want high levels of automation"
 - Trust in technology to do good

Efficiency

Flexibility

Storage

Flexible Demand

Storage value

Storage Systems in the UK Low Carbon Energy Future. The Carbon Trust

Price volatility

Importance Low Medium High	Cost	Lifetime	Energy	Power	Size	Weight	Efficiency
	Lack of alternatives	High device turnover	Daily charging accepted	Steady load modest peaks	Miniaturisa- tion	Handheld devices	Avoid overheating
	Early adopter willing to pay	High device turnover	Range anxiety	Fast charging Accelerate	Space is precious	Moving mass	Economics and range
	Competitors: gas, diesel	Reliability required	Hours, days (and longer?)	Relative to energy	Esp. if on remote sites	Not an issue	Less important with high RES
Performance Low Medium High	Cost \$/kWh	Lifetime yrs	Energy /Power	Power MW	Size m³	Weight t	Efficiency %
Li-Ion	500 (150)	3-10	2	0.001- 10	1 — 1000	0.03 300	>90
Flow battery	500	10	5+	0.1 <i>-</i> 100	10 — 10k	20 – 20k	80
Pumped hydro	150	60	4-30	200 <i>-</i> 2000	10m	10m+	73
Compressed air	80 – 250	40	2-26	100 <i>-</i> 300	100k – 500k	?	45 – 70
Thermal	5 – 300	10 - 30	10	0.001- 100	0.1 <i>-</i> 10k	0.1- 10k	40 – 80
Power to gas	4 – 50	10 +	10 ++	0.01- 100	100 – 500k	?	35

Efficiency

Flexibility

Storage

Flexible Demand

Value of Storage

Very similar for the system Very different in terms of motivation, cost, reliability

based on Strbac 2012

Price signal flexibility

Responsiveness to time-varying pricing Low Carbon London Learning Lab

Two types of agency

Storage based

Service based

Appliances

- Battery
- Storage heater
- Dishwasher
- Washing machine

People

- Activities
- Practitioners
- Provisions
- Norms

Average users are rare

42 Households at 5:30pm

based on HES data

Do we understand what's asked of us?

3 selections \rightarrow discriminate 216 options (...1,296...)

TUC

Life is busy

Hot drink

money / reward

smartness / technology

Exploring flexibility

circumstances

information / nudge

Efficiency

- It matters if IN constrained and OUT valuable

Flexibility

- Lost in physical inertia, fuel stores and central control
- To be replaced with storage, DSR and decentralised control

Storage

- Significant (split) system value
- Short term P, long term E

Flexible Demand

- Not all about energy and money
- We change what we do all the time

Thank you